199 research outputs found
Three-Dimensional Acoustic Displays In A Museum Employing WFS (Wave Field Synthesis) And HOA (High Order Ambisonics)
The paper describes the sound systems and the listening rooms installed in the new "museum
of reproduced sound", actually being built in Parma, restoring an ancient church. The museum
is devoted to the exposition of a huge collection of antique radios and gramophones, but it
will also exploit the frontiers of modern methods for immersive surround reproduction: WFS
and HOA.
In the main hall, a large planar WFS loudspeaker array is employed for inviting the visitors to
enter the world of sound reproduction, providing stunning effects and emotional sounds
enveloping them from many directions.
At the end of the exposition path, a special HOA space is employed for showing the recent
developments of recording/reproduction methods started from the Ambisonics concept,
capable of creating natural reproduction of sport events, live music and other immersive
acoustical experiences; in this room also a binaural/transaural system is available.
A second, larger listening room capable of 30seats is equipped with a horizontal WFS array
covering the complete perimeter of the room. The paper describes the technology employed,
the problems encountered due to the difficult acoustical conditions (the museum was formerly
a church), and the novel software tools developed for the purpose on LINUX platforms
Impacts of climate change on aquaculture
• Aquaculture is a significant industry in UK coastal waters, with annual turnover valued at more than £1.8bn. It particularly important in western and northern Scotland.
• Aquaculture is sensitive to the marine environment and changes therein.
• The dominant contribution of a single species (Atlantic salmon) to production tonnage and value potentially increases vulnerability to climate change.
• Temperature increase is expected to increase growth rates for most species farmed.
• Increased problems associated with some diseases and parasites, notably sea lice and gill disease (which has emerged as a serious problem), are likely to increase in the short term and to get worse in the
longer term. Impacts may be synergistic.
• Harmful Algal Blooms (HABs) and jellyfish swarms/invasions may also get worse, however complex ecosystem interactions make responses uncertain.
• The situation for shellfish is similar to finfish, although they are additionally at risk of accumulation of toxins from HABs, and recruitment failure, and, in the longer term, to sea-level rises and ocean acidification.
• Technical and management changes in the rapidly evolving aquaculture industry make long-term impacts of climate change difficult to forecast
Suitability of aircraft wastewater for pathogen detection and public health surveillance
International air travel is now widely recognised as one of the primary mechanisms responsible for the transnational movement and global spread of SARS-CoV-2. Monitoring the viral load and novel lineages within human-derived wastewater collected from aircraft and at air transport hubs has been proposed as an effective way to monitor the importation frequency of viral pathogens. The success of this approach, however, is highly dependent on the bathroom and defecation habits of air passengers during their journey. In this study of UK adults (n = 2103), we quantified the likelihood of defecation prior to departure, on the aircraft and upon arrival on both short- and long-haul flights. The results were then used to assess the likelihood of capturing the signal from infected individuals at UK travel hubs. To obtain a representative cross-section of the population, the survey was stratified by geographical region, gender, age, parenting status, and social class. We found that an individual's likelihood to defecate on short-haul flights ( 6 h in duration). This behaviour pattern was higher among males and younger age groups. The maximum likelihood of defecation was prior to departure (< 39 %). Based on known SARS-CoV-2 faecal shedding rates (30–60 %) and an equal probability of infected individuals being on short- (71 % of inbound flights) and long-haul flights (29 %), we estimate that aircraft wastewater is likely to capture ca. 8–14 % of SARS-CoV-2 cases entering the UK. Monte Carlo simulations predicted that SARS-CoV-2 would be present in wastewater on 14 % of short-haul flights and 62 % of long-haul flights under current pandemic conditions. We conclude that aircraft wastewater alone is insufficient to effectively monitor all the transboundary entries of faecal-borne pathogens but can form part of a wider strategy for public heath surveillance at national borders
Microwave and Physical Electronics
Contains reports on six research projects.Office of Scientific Research and Development (OSRD) OEMsr-26
A comparison of precipitation and filtration-based SARS-CoV-2 recovery methods and the influence of temperature, turbidity, and surfactant load in urban wastewater
Wastewater-based epidemiology (WBE) has become a complimentary surveillance tool during the SARS-CoV-2 pandemic. Viral concentration methods from wastewater are still being optimised and compared, whilst viral recovery under different wastewater characteristics and storage temperatures remains poorly understood. Using urban wastewater samples, we tested three viral concentration methods; polyethylene glycol precipitation (PEG), ammonium sulphate precipitation (AS), and CP select™ InnovaPrep® (IP) ultrafiltration. We found no major difference in SARS-CoV-2 and faecal indicator virus (crAssphage) recovery from wastewater samples (n = 46) using these methods, PEG slightly (albeit non-significantly), outperformed AS and IP for SARS-CoV-2 detection, as a higher genome copies per litre (gc/l) was recorded for a larger proportion of samples. Next generation sequencing of 8 paired samples revealed non-significant differences in the quality of data between AS and IP, though IP data quality was slightly better and less variable. A controlled experiment assessed the impact of wastewater suspended solids (turbidity; 0–400 NTU), surfactant load (0–200 mg/l), and storage temperature (5–20 °C) on viral recovery using the AS and IP methods. SARS-CoV-2 recoveries were >20% with AS and  0.05), whilst surfactant and storage temperature combined were significant negative correlates (p < 0.001 and p < 0.05, respectively). In conclusion, our results show that choice of methodology had small effect on viral recovery of SARS-CoV-2 and crAssphage in wastewater samples within this study. In contrast, sample turbidity, storage temperature, and surfactant load did affect viral recovery, highlighting the need for careful consideration of the viral concentration methodology used when working with wastewater samples
Predicting potential spawning areas of European bass, Dicentrarchus labrax, in the Irish and Celtic Seas
Marine fish species that form spawning aggregations are often vulnerable to exploitation, such as the European bass (Dicentrarchus labrax). Information on bass spawning aggregations is not well resolved temporally and spatially. Otolith daily growth increment (DGI) counts were conducted on 0-group bass collected in July-August 2014 & 2019 from seven settlement estuaries in the Irish and Celtic seas, to estimate the timing of spawning. These timings parameterised three-dimensional hydrodynamic and Lagrangian particle tracking models, run in reverse, to identify probable spawning locations. Estimated spawning occurred between April-May (inshore and offshore) < 200 km from each settlement area. At least two broad spawning areas were predicted: the central Irish Sea that led to post-larval recruitment in north Wales and northwest England, and the southern Irish Sea/Celtic Sea that led to post-larval recruitment in south Wales. Results indicate the current seasonal closure for northern stock bass may not protect spawning events that drive recruitment into settlement sites in Wales and northwest England. Surface temperatures and wind- and tide-driven surface currents determined the connectivity between spawning and settlement sites. Atmospheric drivers are expected to change in the future and management needs to account for potential regional shifts in spawning times and locations
Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19
The recent detection of SARS-CoV-2 RNA in feces has led to speculation that it can be transmitted via the fecal-oral/ocular route. This review aims to critically evaluate the incidence of gastrointestinal (GI) symptoms, the quantity and infectivity of SARS-CoV-2 in feces and urine, and whether these pose an infection risk in sanitary settings, sewage networks, wastewater treatment plants, and the wider environment (e.g. rivers, lakes and marine waters). A review of 48 independent studies revealed that severe GI dysfunction is only evident in a small number of COVID-19 cases, with 11 ± 2% exhibiting diarrhea and 12 ± 3% exhibiting vomiting and nausea. In addition to these cases, SARS-CoV-2 RNA can be detected in feces from some asymptomatic, mildly- and pre-symptomatic individuals. Fecal shedding of the virus peaks in the symptomatic period and can persist for several weeks, but with declining abundances in the post-symptomatic phase. SARS-CoV-2 RNA is occasionally detected in urine, but reports in fecal samples are more frequent. The abundance of the virus genetic material in both urine (ca. 102–105 gc/ml) and feces (ca. 102–107 gc/ml) is much lower than in nasopharyngeal fluids (ca. 105–1011 gc/ml). There is strong evidence of multiplication of SARS-CoV-2 in the gut and infectious virus has occasionally been recovered from both urine and stool samples. The level and infectious capability of SARS-CoV-2 in vomit remain unknown. In comparison to enteric viruses transmitted via the fecal-oral route (e.g. norovirus, adenovirus), the likelihood of SARS-CoV-2 being transmitted via feces or urine appears much lower due to the lower relative amounts of virus present in feces/urine. The biggest risk of transmission will occur in clinical and care home settings where secondary handling of people and urine/fecal matter occurs. In addition, while SARS-CoV-2 RNA genetic material can be detected by in wastewater, this signal is greatly reduced by conventional treatment. Our analysis also suggests the likelihood of infection due to contact with sewage-contaminated water (e.g. swimming, surfing, angling) or food (e.g. salads, shellfish) is extremely low or negligible based on very low predicted abundances and limited environmental survival of SARS-CoV-2. These conclusions are corroborated by the fact that tens of million cases of COVID-19 have occurred globally, but exposure to feces or wastewater has never been implicated as a transmission vector
The Magnus expansion and some of its applications
Approximate resolution of linear systems of differential equations with
varying coefficients is a recurrent problem shared by a number of scientific
and engineering areas, ranging from Quantum Mechanics to Control Theory. When
formulated in operator or matrix form, the Magnus expansion furnishes an
elegant setting to built up approximate exponential representations of the
solution of the system. It provides a power series expansion for the
corresponding exponent and is sometimes referred to as Time-Dependent
Exponential Perturbation Theory. Every Magnus approximant corresponds in
Perturbation Theory to a partial re-summation of infinite terms with the
important additional property of preserving at any order certain symmetries of
the exact solution. The goal of this review is threefold. First, to collect a
number of developments scattered through half a century of scientific
literature on Magnus expansion. They concern the methods for the generation of
terms in the expansion, estimates of the radius of convergence of the series,
generalizations and related non-perturbative expansions. Second, to provide a
bridge with its implementation as generator of especial purpose numerical
integration methods, a field of intense activity during the last decade. Third,
to illustrate with examples the kind of results one can expect from Magnus
expansion in comparison with those from both perturbative schemes and standard
numerical integrators. We buttress this issue with a revision of the wide range
of physical applications found by Magnus expansion in the literature.Comment: Report on the Magnus expansion for differential equations and its
applications to several physical problem
- …