417 research outputs found
Water quality awareness and barriers to safe water provisioning in informal communities: A case study from Ndola, Zambia
Local water providers in developing nations typically view shallow hand-dug wells as traditional and backward sources of water supply. It has long been assumed that the urban poor do not have the ability to develop these in a way that allows them to be classified as ‘improved’ in terms of the Millennium Development Goal for water, believing that users do not understand the factors that constitute safe water and the threats to these sources. Our assessment of the level of environmental knowledge held by local water-users in Ndola in Zambia demonstrates a coherent understanding of the safety of their water sources, the quality of these, the threats to them, and the fundamentals of how their local hydrology works, all of which is contrary to the perspective of key informants who are involved in water supply. Despite their environmental awareness, the majority of users did not generally protect their wells from contamination nor treat their water. The apparent paradox between awareness of risks to water and implementing protection of that water source is a function of the complex suite of socially manifested attitudes, habits and behaviours when it comes to water protection and treatment, which is exacerbated by vulnerable community and family structures and entrenched poverty. For meaningful outcomes in improved access to safe water to be realised providers need to increase their engagement with the informal communities, moving deeper into community-based participatory planning and recognise the societal and cultural factors that are entrained into these communities water supply practices. A key part of this involves the need for providers to move away from simple knowledge-based education to the more holistic form of skill-based health education
Translational Modeling in Schizophrenia:Predicting Human Dopamine D2 Receptor Occupancy
OBJECTIVES: To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs.METHODS: A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses.RESULTS: Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol.CONCLUSIONS: The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.</p
Glucose Depletion in the Airway Surface Liquid Is Essential for Sterility of the Airways
Diabetes mellitus predisposes the host to bacterial infections. Moreover, hyperglycemia has been shown to be an independent risk factor for respiratory infections. The luminal surface of airway epithelia is covered by a thin layer of airway surface liquid (ASL) and is normally sterile despite constant exposure to bacteria. The balance between bacterial growth and killing in the airway determines the outcome of exposure to inhaled or aspirated bacteria: infection or sterility. We hypothesized that restriction of carbon sources –including glucose– in the ASL is required for sterility of the lungs. We found that airway epithelia deplete glucose from the ASL via a novel mechanism involving polarized expression of GLUT-1 and GLUT-10, intracellular glucose phosphorylation, and low relative paracellular glucose permeability in well-differentiated cultures of human airway epithelia and in segments of airway epithelia excised from human tracheas. Moreover, we found that increased glucose concentration in the ASL augments growth of P. aeruginosa in vitro and in the lungs of hyperglycemic ob/ob and db/db mice in vivo. In contrast, hyperglycemia had no effect on intrapulmonary bacterial growth of a P. aeruginosa mutant that is unable to utilize glucose as a carbon source. Our data suggest that depletion of glucose in the airway epithelial surface is a novel mechanism for innate immunity. This mechanism is important for sterility of the airways and has implications in hyperglycemia and conditions that result in disruption of the epithelial barrier in the lung
Race-specific coregulatory and transcriptomic profiles associated with DNA methylation and androgen receptor in prostate cancer
Abstract Background Prostate cancer is a significant health concern, particularly among African American (AA) men who exhibit higher incidence and mortality compared to European American (EA) men. Understanding the molecular mechanisms underlying these disparities is imperative for enhancing clinical management and achieving better outcomes. Methods Employing a multi-omics approach, we analyzed prostate cancer in both AA and EA men. Using Illumina methylation arrays and RNA sequencing, we investigated DNA methylation and gene expression in tumor and non-tumor prostate tissues. Additionally, Boolean analysis was utilized to unravel complex networks contributing to racial disparities in prostate cancer. Results When comparing tumor and adjacent non-tumor prostate tissues, we found that DNA hypermethylated regions are enriched for PRC2/H3K27me3 pathways and EZH2/SUZ12 cofactors. Olfactory/ribosomal pathways and distinct cofactors, including CTCF and KMT2A, were enriched in DNA hypomethylated regions in prostate tumors from AA men. We identified race-specific inverse associations of DNA methylation with expression of several androgen receptor (AR) associated genes, including the GATA family of transcription factors and TRIM63. This suggests that race-specific dysregulation of the AR signaling pathway exists in prostate cancer. To investigate the effect of AR inhibition on race-specific gene expression changes, we generated in-silico patient-specific prostate cancer Boolean networks. Our simulations revealed prolonged AR inhibition causes significant dysregulation of TGF-β, IDH1, and cell cycle pathways specifically in AA prostate cancer. We further quantified global gene expression changes, which revealed differential expression of genes related to microtubules, immune function, and TMPRSS2-fusion pathways, specifically in prostate tumors of AA men. Enrichment of these pathways significantly correlated with an altered risk of disease progression in a race-specific manner. Conclusions Our study reveals unique signaling networks underlying prostate cancer biology in AA and EA men, offering potential insights for clinical management strategies tailored to specific racial groups. Targeting AR and associated pathways could be particularly beneficial in addressing the disparities observed in prostate cancer outcomes in the context of AA and EA men. Further investigation into these identified pathways may lead to the development of personalized therapeutic approaches to improve outcomes for prostate cancer patients across different racial backgrounds
Additional file 1 of Race-specific coregulatory and transcriptomic profiles associated with DNA methylation and androgen receptor in prostate cancer
Additional File 1
Identification of Plasma Membrane Macro- and Microdomains from Wavelet Analysis of FRET Microscopy
In this study, we sought to characterize functional signaling domains by applying the multiresolution properties of the continuous wavelet transform to fluorescence resonance energy transfer (FRET) microscopic images of plasma membranes. A genetically encoded FRET reporter of protein kinase C (PKC)-dependent phosphorylation was expressed in COS1 cells. Differences between wavelet coefficient matrices revealed several heterogeneous domains (typically ranging from 1 to 5 μm), reflecting the dynamic balance between PKC and phosphatase activity during stimulation with phorbol-12,13-dibutyrate or acetylcholine. The balance in these domains was not necessarily reflected in the overall plasma membrane changes, and observed heterogeneity was absent when cells were exposed to a phosphatase or PKC inhibitor. Prolonged exposure to phorbol-12,13-dibutyrate and acetylcholine yielded more homogeneous FRET distribution in plasma membranes. The proposed wavelet-based image analysis provides, for the first time, a basis and a means of detecting and quantifying dynamic changes in functional signaling domains, and may find broader application in studying fine aspects of cellular signaling by various imaging reporters
Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease
Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha1 subunit (GLRA1)1, 2, 3. Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic proteins including the GlyR beta subunit (GLRB)4, gephyrin (GPHN)5 and RhoGEF collybistin (ARHGEF9)6. However, many individuals diagnosed with sporadic hyperekplexia do not carry mutations in these genes2, 3, 4, 5, 6, 7. Here we show that missense, nonsense and frameshift mutations in SLC6A5 (ref. 8), encoding the presynaptic glycine transporter 2 (GlyT2), also cause hyperekplexia. Individuals with mutations in SLC6A5 present with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnea episodes. SLC6A5 mutations result in defective subcellular GlyT2 localization, decreased glycine uptake or both, with selected mutations affecting predicted glycine and Na+ binding sites
- …