330 research outputs found

    Measuring the polarization content of gravitational waves with strongly lensed binary black hole mergers

    Full text link
    Alternative theories of gravity predict up to six distinct polarization modes for gravitational waves. Strong gravitational lensing of gravitational waves allows us to probe the polarization content of these signals by effectively increasing the number of observations from the same astrophysical source. The lensing time delays due to the multiple observed lensed images combined with the rotation of the Earth allows for effective non-collocated interferometers to be defined with respect to the source location and hence probe the alternative polarization amplitudes with more observations. To measure these amplitudes, we jointly fit the image observations to a single gravitational wave signal model that takes into account the image magnifications, time delays, and polarization mode amplitudes. We show that for certain systems, we can make a measurement of the relative mode amplitudes for lensed events with two detectable images.Comment: 8 pages, 6 figure

    Challenges for Fast Radio Bursts as Multi-Messenger Sources from Binary Neutron Star Mergers

    Full text link
    Fast radio bursts (FRBs) are a newly discovered class of radio transients that emerge from cosmological sources and last for \sim a few milliseconds. However, their origin remains a highly debated topic in astronomy. Among the plethora of cataclysmic events proposed as potential progenitors, binary neutron star (BNS) mergers have risen as compelling candidates for at least some subset of apparently non-repeating FRBs. However, this connection should not be drawn solely on the basis of chance coincidence probability. In this study, we delineate necessary criteria that must be met when considering an association between FRBs and BNS mergers, focusing on the post-merger ejecta environment. To underscore the significance of these criteria, we scrutinize the proposed association between GW190425 and FRB20190425A. Our investigation meticulously accounts for the challenging condition that the FRB signal must traverse the dense merger ejecta without significant attenuation to remain detectable at 400 MHz. Furthermore, we find that if the FRB is indeed linked to the gravitational wave event, the GW data strongly support a highly off-axis configuration, with a probability of the BNS merger viewing angle p(θvp(\theta_v >> 30^{\circ}) to be \approx 99.99%. Our findings therefore strongly exclude an on-axis system, which we find, on the other hand, to be required in order for this FRB to be detectable. Hence, we conclude that GW190425 is not related to FRB20190425A. We also discuss implications of our results for future detections of coincident multi-messenger observations of FRBs from BNS remnants and GW events and argue that BNS merger remnants cannot account for the formation of > 1% of FRB sources. This observation suggests that short gamma-ray bursts should not be used to explain global attributes of the FRB host population.Comment: 9 pages, 4 figures. Submitte

    Non-parametric inference of the population of compact binaries from gravitational wave observations using binned Gaussian processes

    Full text link
    The observation of gravitational waves from multiple compact binary coalescences by the LIGO-Virgo-KAGRA detector networks has enabled us to infer the underlying distribution of compact binaries across a wide range of masses, spins, and redshifts. In light of the new features found in the mass spectrum of binary black holes and the uncertainty regarding binary formation models, non-parametric population inference has become increasingly popular. In this work, we develop a data-driven clustering framework that can identify features in the component mass distribution of compact binaries simultaneously with those in the corresponding redshift distribution, from gravitational wave data in the presence of significant measurement uncertainties, while making very few assumptions on the functional form of these distributions. Our generalized model is capable of inferring correlations among various population properties such as the redshift evolution of the shape of the mass distribution itself, in contrast to most existing non-parametric inference schemes. We test our model on simulated data and demonstrate the accuracy with which it can re-construct the underlying distributions of component masses and redshifts. We also re-analyze public LIGO-Virgo-KAGRA data from events in GWTC-3 using our model and compare our results with those from some alternative parametric and non-parametric population inference approaches. Finally, we investigate the potential presence of correlations between mass and redshift in the population of binary black holes in GWTC-3 (those observed by the LIGO-Virgo-KAGRA detector network in their first 3 observing runs), without making any assumptions about the specific nature of these correlations.Comment: Upload accepted versio

    Localization of binary neutron star mergers with a single Cosmic Explorer

    Full text link
    Next-generation ground-based gravitational-wave detectors, such as Cosmic Explorer (CE), are expected to be sensitive to gravitational-wave signals with frequencies as low as 5 Hz, allowing signals to spend a significant amount of time in the detector frequency band. As a result, the effects caused by the rotation of the Earth become increasingly important for such signals. Additionally, the length of the arms of these detectors can be comparable to the wavelength of detectable gravitational waves, which introduces frequency-dependent effects that are not significant in current-generation detectors. These effects are expected to improve the ability to localize compact binary coalescences in the sky even when using only one detector. This study aims to understand how much these effects can help in localization. We present the first comprehensive Bayesian parameter estimation framework that accounts for all these effects using \textsc{Bilby}, a commonly used Bayesian parameter estimation tool. We focus on sky localization constraints for binary neutron star events with an optimal signal-to-noise ratio of 1000 with one detector at the projected CE sensitivity. We find that these effects help localize sources using one detector with sky areas as low as 10 square degrees. Moreover, we explore and discuss how ignoring these effects in the parameter estimation can lead to biases in the inference.Comment: Version accepted by PR

    Follow-up analyses to the O3 LIGO-Virgo-KAGRA lensing searches

    Full text link
    Along their path from source to observer, gravitational waves may be gravitationally lensed by massive objects. This results in distortions of the observed signal which can be used to extract new information about fundamental physics, astrophysics, and cosmology. Searches for these distortions amongst the observed signals from the current detector network have already been carried out, though there have as yet been no confident detections. However, predictions of the observation rate of lensing suggest detection in the future is a realistic possibility. Therefore, preparations need to be made to thoroughly investigate the candidate lensed signals. In this work, we present some of the follow-up analyses and strategies that could be applied to assess the significance of such events and ascertain what information may be extracted about the lens-source system from such candidate signals by applying them to a number of O3 candidate events, even if these signals did not yield a high significance for any of the lensing hypotheses. For strongly-lensed candidates, we verify their significance using a background of simulated unlensed events and statistics computed from lensing catalogs. We also look for potential electromagnetic counterparts. In addition, we analyse in detail a candidate for a strongly-lensed sub-threshold counterpart that is identified by a new method. For microlensing candidates, we perform model selection using a number of lens models to investigate our ability to determine the mass density profile of the lens and constrain the lens parameters. We also look for millilensing signatures in one of the lensed candidates. Applying these additional analyses does not lead to any additional evidence for lensing in the candidates that have been examined. However, it does provide important insight into potential avenues to deal with high-significance candidates in future observations.Comment: 34 pages, 27 figure

    Follow-up analyses to the O3 LIGO–Virgo–KAGRA lensing searches

    Get PDF
    Along their path from source to observer, gravitational waves may be gravitationally lensed by massive objects leading to distortion in the signals. Searches for these distortions amongst the observed signals from the current detector network have already been carried out, though there have as yet been no confident detections. However, predictions of the observation rate of lensing suggest detection in the future is a realistic possibility. Therefore, preparations need to be made to thoroughly investigate the candidate lensed signals. In this work, we present some follow-up analyses that could be applied to assess the significance of such events and ascertain what information may be extracted about the lens-source system by applying these analyses to a number of O3 candidate events, even if these signals did not yield a high significance for any of the lensing hypotheses. These analyses cover the strong lensing, millilensing, and microlensing regimes. Applying these additional analyses does not lead to any additional evidence for lensing in the candidates that have been examined. However, it does provide important insight into potential avenues to deal with high-significance candidates in future observations

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Search for stop and higgsino production using diphoton Higgs boson decays

    Get PDF
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top-quark (stop) and the Higgs boson (higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7 inverse femtobarns of proton-proton collision data at sqrt(s) = 8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the stop mass below 360 to 410 GeV, depending on the higgsino mass
    corecore