Challenges for Fast Radio Bursts as Multi-Messenger Sources from Binary Neutron Star Mergers

Abstract

Fast radio bursts (FRBs) are a newly discovered class of radio transients that emerge from cosmological sources and last for \sim a few milliseconds. However, their origin remains a highly debated topic in astronomy. Among the plethora of cataclysmic events proposed as potential progenitors, binary neutron star (BNS) mergers have risen as compelling candidates for at least some subset of apparently non-repeating FRBs. However, this connection should not be drawn solely on the basis of chance coincidence probability. In this study, we delineate necessary criteria that must be met when considering an association between FRBs and BNS mergers, focusing on the post-merger ejecta environment. To underscore the significance of these criteria, we scrutinize the proposed association between GW190425 and FRB20190425A. Our investigation meticulously accounts for the challenging condition that the FRB signal must traverse the dense merger ejecta without significant attenuation to remain detectable at 400 MHz. Furthermore, we find that if the FRB is indeed linked to the gravitational wave event, the GW data strongly support a highly off-axis configuration, with a probability of the BNS merger viewing angle p(θvp(\theta_v >> 30^{\circ}) to be \approx 99.99%. Our findings therefore strongly exclude an on-axis system, which we find, on the other hand, to be required in order for this FRB to be detectable. Hence, we conclude that GW190425 is not related to FRB20190425A. We also discuss implications of our results for future detections of coincident multi-messenger observations of FRBs from BNS remnants and GW events and argue that BNS merger remnants cannot account for the formation of > 1% of FRB sources. This observation suggests that short gamma-ray bursts should not be used to explain global attributes of the FRB host population.Comment: 9 pages, 4 figures. Submitte

    Similar works

    Full text

    thumbnail-image

    Available Versions