64 research outputs found

    Meta-analysis of Cryogenian through modern quartz microtextures reveals sediment transport histories

    Get PDF
    Quantitative scanning electron microscopy (SEM) quartz microtextural analysis can reveal the transport histories of modern and ancient sediments. However, because workers identify and count microtextures differently, it is difficult to directly compare quantitative microtextural data analyzed by different workers. As a result, the defining microtextures of certain transport modes and their probabilities of occurrence are not well constrained. We used principal component analysis (PCA) to directly compare modern and ancient aeolian, fluvial, and glacial samples from the literature with 9 new samples from active aeolian and glacial environments. Our results demonstrate that PCA can group microtextural samples by transport mode and differentiate between aeolian and fluvial/glacial transport modes across studies. The PCA ordination indicates that aeolian samples are distinct from fluvial and glacial samples, which are in turn difficult to disambiguate from each other. Ancient and modern sediments are also shown to have quantitatively similar microtextural relationships. Therefore, PCA may be a useful tool to constrain the ambiguous transport histories of some ancient sediment grains. As a case study, we analyzed two samples with ambiguous transport histories from the Cryogenian Bråvika Member (Svalbard). Integrating PCA with field observations, we find evidence that the Bråvika Member facies investigated here includes aeolian deposition and may be analogous to syn-glacial Marinoan aeolian units including the Bakoye Formation in Mali and the Whyalla Sandstone in South Australia

    A 600-Million-Year Carbonate Clumped-Isotope Record from the Sultanate of Oman

    Get PDF
    Carbonate clumped-isotope thermometry is a promising technique that has the potential to help decode the significance of the variability of both physical and geochemical compositions of ancient carbonate rocks. This study utilizes a 600-million-year record of marine carbonate rocks from the subsurface and surface of the Sultanate of Oman to explore how burial and exhumation affected the carbonate clumped-isotope thermometer. Samples span 6 km of burial depth, and include calcite and dolomite mineralogies and a range of carbonate rock textures. We find evidence for two broad patterns in the physical and geochemical behavior of carbonate rocks during burial. The first group of carbonates yield water ή^(18)O_(VSMOW) compositions slightly enriched or equal to an expected “ice-free” seawater composition of –1.2‰ and display good to fair textural preservation suggesting that cementation and lithification occurred within tens of meters of the sediment–water interface. Temperatures from the second group sit on the present-day geotherm, yield highly enriched water ή^(18)O_(VSMOW) compositions, and display fair to poor textural preservation. We find no evidence for solid-state reordering in paired analyses of calcites and dolomites. Our results contribute to a growing body of work that indicates that the seawater ή^(18)O_(VSMOW) composition has not changed significantly over 600 Myr and was not –6‰ in the Ediacaran

    A 600-Million-Year Carbonate Clumped-Isotope Record from the Sultanate of Oman

    Get PDF
    Carbonate clumped-isotope thermometry is a promising technique that has the potential to help decode the significance of the variability of both physical and geochemical compositions of ancient carbonate rocks. This study utilizes a 600-million-year record of marine carbonate rocks from the subsurface and surface of the Sultanate of Oman to explore how burial and exhumation affected the carbonate clumped-isotope thermometer. Samples span 6 km of burial depth, and include calcite and dolomite mineralogies and a range of carbonate rock textures. We find evidence for two broad patterns in the physical and geochemical behavior of carbonate rocks during burial. The first group of carbonates yield water ή^(18)O_(VSMOW) compositions slightly enriched or equal to an expected “ice-free” seawater composition of –1.2‰ and display good to fair textural preservation suggesting that cementation and lithification occurred within tens of meters of the sediment–water interface. Temperatures from the second group sit on the present-day geotherm, yield highly enriched water ή^(18)O_(VSMOW) compositions, and display fair to poor textural preservation. We find no evidence for solid-state reordering in paired analyses of calcites and dolomites. Our results contribute to a growing body of work that indicates that the seawater ή^(18)O_(VSMOW) composition has not changed significantly over 600 Myr and was not –6‰ in the Ediacaran

    Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression

    Get PDF
    Glaucoma, a disease characterized by progressive optic nerve degeneration, can be prevented through timely diagnosis and treatment. We characterize optic nerve photographs of 67,040 UK Biobank participants and use a multitrait genetic model to identify risk loci for glaucoma. A glaucoma polygenic risk score (PRS) enables effective risk stratification in unselected glaucoma cases and modifies penetrance of the MYOC variant encoding p.Gln368Ter, the most common glaucoma-associated myocilin variant. In the unselected glaucoma population, individuals in the top PRS decile reach an absolute risk for glaucoma 10 years earlier than the bottom decile and are at 15-fold increased risk of developing advanced glaucoma (top 10% versus remaining 90%, odds ratio = 4.20). The PRS predicts glaucoma progression in prospectively monitored, early manifest glaucoma cases (P = 0.004) and surgical intervention in advanced disease (P = 3.6 × 10). This glaucoma PRS will facilitate the development of a personalized approach for earlier treatment of high-risk individuals, with less intensive monitoring and treatment being possible for lower-risk groups

    Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign

    Get PDF
    Abstract: In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∌6.5 × 109 M ⊙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87’s spectrum. We can exclude that the simultaneous Îł-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the Îł-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded

    Harmful Elements in Estuarine and Coastal Systems

    Get PDF
    Estuaries and coastal zones are dynamic transitional systems which provide many economic and ecological benefits to humans, but also are an ideal habitat for other organisms as well. These areas are becoming contaminated by various anthropogenic activities due to a quick economic growth and urbanization. This chapter explores the sources, chemical speciation, sediment accumulation and removal mechanisms of the harmful elements in estuarine and coastal seawaters. It also describes the effects of toxic elements on aquatic flora and fauna. Finally, the toxic element pollution of the Venice Lagoon, a transitional water body located in the northeastern part of Italy, is discussed as a case study, by presenting the procedures adopted to measure the extent of the pollution, the impacts on organisms and the restoration activities

    A Decrease to Low Carbonate Clumped Isotope Temperatures in Cryogenian Strata

    No full text
    Preglacial and synglacial low-latitude carbonate sediments of the Elbobreen Formation, NE Svalbard, preserve facies changes associated with low-latitude glacial advance in Cryogenian “Snowball Earth” episodes (717–635 Ma). We present the first application of carbonate clumped (Δ47) isotope thermometry on synglacial Snowball Earth carbonates and combine results with sedimentologic and petrographic observations and stable isotope (ÎŽ13C and ÎŽ18O) geochemistry to assess Neoproterozoic environmental change. We find elevated calcite Δ47 temperatures, which likely reflect solid-state reordering during burial. Dolomites, however, record lower temperatures that vary with facies and stratigraphy. Preglacial dolomite Δ47 temperatures range from 48–77°C, with a reconstructed fluid ÎŽ18OVSMOW value of +0.6‰ in the coldest sample. Glacial diamictites and dolomicrites comprise (1) reworked detrital clasts similar to preglacial strata in stable isotope composition and petrographic textures and (2) autochthonous dolomicrite with more positive ÎŽ18O values than those of preglacial dolomites or cooccurring detrital clasts. Mean glacial autochthonous dolomicrite Δ47 temperatures are 26 ± 10°C (95% CL) cooler than preglacial strata, with four samples <25°C. All dolomite Δ47 temperatures reflect diagenesis associated with lithification, yet observed stratigraphic and textural Δ47 temperature differences indicate that this occurred early and only contributes to part of the preserved temperature signal. Alteration trends within populations are consistent with low water/rock ratio diagenesis or partial solid-state reordering; either possibility supports the likelihood of preserved ÎŽ18O trends. We postulate that the preserved temperature and ÎŽ18O differences between low-latitude preglacial Tonian and synglacial Cryogenian dolomites are an imperfect reflection of primary temperature change and ice sheet expansion
    • 

    corecore