19 research outputs found

    North American monsoon and convectively coupled equatorial waves simulated by IPCC AR4 coupled GCMs

    Get PDF
    This study evaluates the fidelity of North American monsoon and associated intraseasonal variability in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general circulation models (CGCMs). Twenty years of monthly precipitation data from each of the 22 models' twentieth-century climate simulations, together with the available daily precipitation data from 12 of them, are analyzed and compared with Global Precipitation Climatology Project (GPCP) monthly and daily precipitation. The authors focus on the seasonal cycle and horizontal pattern of monsoon precipitation in conjunction with the two dominant convectively coupled equatorial wave modes: the eastward-propagating Madden-Julian oscillation (MJO) and the westward-propagating easterly waves. The results show that the IPCC AR4 CGCMs have significant problems and display a wide range of skill in simulating the North American monsoon and associated intraseasonal variability. Most of the models reproduce the monsoon rainbelt, extending from southeast to northwest, and its gradual northward shift in early summer, but overestimate the precipitation over the core monsoon region throughout the seasonal cycle and fail to reproduce the monsoon retreat in the fall. Additionally, most models simulate good westward propagation of the easterly waves, but relatively poor eastward propagation of the MJO and overly weak variances for both the easterly waves and the MJO. There is a tendency for models without undiluted updrafts in their deep convection scheme to produce better MJO propagation.open221

    Simulations of the 2004 North American Monsoon: NAMAP2

    Get PDF
    The second phase of the North American Monsoon Experiment (NAME) Model Assessment Project (NAMAP2) was carried out to provide a coordinated set of simulations from global and regional models of the 2004 warm season across the North American monsoon domain. This project follows an earlier assessment, called NAMAP, that preceded the 2004 field season of the North American Monsoon Experiment. Six global and four regional models are all forced with prescribed, time-varying ocean surface temperatures. Metrics for model simulation of warm season precipitation processes developed in NAMAP are examined that pertain to the seasonal progression and diurnal cycle of precipitation, monsoon onset, surface turbulent fluxes, and simulation of the low-level jet circulation over the Gulf of California. Assessment of the metrics is shown to be limited by continuing uncertainties in spatially averaged observations, demonstrating that modeling and observational analysis capabilities need to be developed concurrently. Simulations of the core subregion (CORE) of monsoonal precipitation in global models have improved since NAMAP, despite the lack of a proper low-level jet circulation in these simulations. Some regional models run at higher resolution still exhibit the tendency observed in NAMAP to overestimate precipitation in the CORE subregion; this is shown to involve both convective and resolved components of the total precipitation. The variability of precipitation in the Arizona/New Mexico (AZNM) subregion is simulated much better by the regional models compared with the global models, illustrating the importance of transient circulation anomalies (prescribed as lateral boundary conditions) for simulating precipitation in the northern part of the monsoon domain. This suggests that seasonal predictability derivable from lower boundary conditions may be limited in the AZNM subregion.open131

    The Intra-Americas Sea Low-level Jet

    No full text
    A relevant climate feature of the Intra‐Americas Sea (IAS) is the low‐level jet (IALLJ) dominating the IAS circulation, both in summer and winter; and yet it is practically unknown with regard to its nature, structure, interactions with mid‐latitude and tropical phenomena, and its role in regional weather and climate. This paper updates IALLJ current knowledge and its contribution to IAS circulation–precipitation patterns and presents recent findings about the IALLJ based on first in situ observations during Phase 3 of the Experimento Climático en las Albercas de Agua Cálida (ECAC), an international field campaign to study IALLJ dynamics during July 2001. Nonhydrostatic fifth‐generation Pennsylvania State University National Center for Atmospheric Research Mesoscale Model (MM5) simulations were compared with observations and reanalysis. Large‐scale circulation patterns of the IALLJ northern hemisphere summer and winter components suggest that trades, and so the IALLJ, are responding to land–ocean thermal contrasts during the summer season of each continent. The IALLJ is a natural component of the American monsoons as a result of the continent's approximate north–south land distribution. During warm (cold) El Niño–Southern Oscillation phases, winds associated with the IALLJ core (IALLJC) are stronger (weaker) than normal, so precipitation anomalies are positive (negative) in the western Caribbean near Central America and negative (positive) in the central IAS. During the ECAC Phase 3, strong surface winds associated with the IALLJ induced upwelling, cooling down the sea surface temperature by 1–2 °C. The atmospheric mixed layer height reached 1 km near the surface wind maximum below the IALLJC. Observations indicate that primary water vapor advection takes place in a shallow layer between the IALLJC and the ocean surface. Latent heat flux peaked below the IALLJC. Neither the reanalysis nor MM5 captured the observed thermodynamic and kinematic IALLJ structure. So far, IALLJ knowledge is based on either dynamically initialized data or simulations of global (regional) models, which implies that a more systematic and scientific approach is needed to improve it. The Intra‐Americas Study of Climate Processes is a great regional opportunity to address trough field work, modeling, and process studies, many of the IALLJ unknown features.Universidad de Costa Rica/[805-98-506]/UCR/Costa RicaUniversidad de Costa Rica/[805-A7-002]/UCR/Costa RicaUniversidad de Costa Rica/[805-A7-755]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI
    corecore