244 research outputs found

    Hydrodynamical simulations of the decay of high-speed molecular turbulence. I. Dense molecular regions

    Full text link
    We present the results from three dimensional hydrodynamical simulations of decaying high-speed turbulence in dense molecular clouds. We compare our results, which include a detailed cooling function, molecular hydrogen chemistry and a limited C and O chemistry, to those previously obtained for decaying isothermal turbulence. After an initial phase of shock formation, power-law decay regimes are uncovered, as in the isothermal case. We find that the turbulence decays faster than in the isothermal case because the average Mach number remains higher, due to the radiative cooling. The total thermal energy, initially raised by the introduction of turbulence, decays only a little slower than the kinetic energy. We discover that molecule reformation, as the fast turbulence decays, is several times faster than that predicted for a non-turbulent medium. This is caused by moderate speed shocks which sweep through a large fraction of the volume, compressing the gas and dust. Through reformation, the molecular density and molecular column appear as complex patterns of filaments, clumps and some diffuse structure. In contrast, the molecular fraction has a wider distribution of highly distorted clumps and copious diffuse structure, so that density and molecular density are almost identically distributed during the reformation phase. We conclude that molecules form in swept-up clumps but effectively mix throughout via subsequent expansions and compressions.Comment: 12 pages, 12 figures; For a version of the article with higher resolution figures, see http://star.arm.ac.uk/preprints/381.p

    Dependence of the Star Formation Efficiency on the Parameters of Molecular Cloud Formation Simulations

    Full text link
    We investigate the response of the star formation efficiency (SFE) to the main parameters of simulations of molecular cloud formation by the collision of warm diffuse medium (WNM) cylindrical streams, neglecting stellar feedback and magnetic fields. The parameters we vary are the Mach number of the inflow velocity of the streams, Msinf, the rms Mach number of the initial background turbulence in the WNM, and the total mass contained in the colliding gas streams, Minf. Because the SFE is a function of time, we define two estimators for it, the "absolute" SFE, measured at t = 25 Myr into the simulation's evolution (sfeabs), and the "relative" SFE, measured 5 Myr after the onset of star formation in each simulation (sferel). The latter is close to the "star formation rate per free-fall time" for gas at n = 100 cm^-3. We find that both estimators decrease with increasing Minf, although by no more than a factor of 2 as Msinf increases from 1.25 to 3.5. Increasing levels of background turbulence similarly reduce the SFE, because the turbulence disrupts the coherence of the colliding streams, fragmenting the cloud, and producing small-scale clumps scattered through the numerical box, which have low SFEs. Finally, the SFE is very sensitive to the mass of the inflows, with sferel decreasing from ~0.4 to ~0.04 as the the virial parameter in the colliding streams increases from ~0.15 to ~1.5. This trend is in partial agreement with the prediction by Krumholz & McKee (2005), since the latter lies within the same range as the observed efficiencies, but with a significantly shallower slope. We conclude that the observed variability of the SFE is a highly sensitive function of the parameters of the cloud formation process, and may be the cause of significant scatter in observational determinations.Comment: 19 pages, submitted to MNRA

    Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: II. Comparison with Observation, Clump Properties, and Scaling to Physical Units

    Full text link
    Ambipolar diffusion is important in redistributing magnetic flux and in damping Alfven waves in molecular clouds. The importance of ambipolar diffusion on a length scale \ell is governed by the ambipolar diffusion Reynolds number, \rad=\ell/\lad, where \lad is the characteristic length scale for ambipolar diffusion. The logarithmic mean of the AD Reynolds number in a sample of 15 molecular clumps with measured magnetic fields (Crutcher 1999) is 17, comparable to the theoretically expected value. We identify several regimes of ambipolar diffusion in a turbulent medium, depending on the ratio of the flow time to collision times between ions and neutrals; the clumps observed by Crutcher (1999) are all in the standard regime of ambipolar diffusion, in which the neutrals and ions are coupled over a flow time. We have carried out two-fluid simulations of ambipolar diffusion in isothermal, turbulent boxes for a range of values of \rad. The mean Mach numbers were fixed at \calm=3 and \ma=0.67; self-gravity was not included. We study the properties of overdensities--i.e., clumps--in the simulation and show that the slope of the higher-mass portion of the clump mass spectrum increases as \rad decreases, which is qualitatively consistent with Padoan et al. (2007)'s finding that the mass spectrum in hydrodynamic turbulence is significantly steeper than in ideal MHD turbulence. For a value of \rad similar to the observed value, we find a slope that is consistent with that of the high-mass end of the Initial Mass Function for stars. However, the value we find for the spectral index in our ideal MHD simulation differs from theirs, presumably because our simulations have different initial conditions. This suggests that the mass spectrum of the clumps in the Padoan et al. (2007) turbulent fragmentation model for the IMF depends on the environment, which would conflict with evidence ...Comment: 33 pages, 7 figure

    Clump morphology and evolution in MHD simulations of molecular cloud formation

    Full text link
    Abridged: We study the properties of clumps formed in three-dimensional weakly magnetized magneto-hydrodynamic simulations of converging flows in the thermally bistable, warm neutral medium (WNM). We find that: (1) Similarly to the situation in the classical two-phase medium, cold, dense clumps form through dynamically-triggered thermal instability in the compressed layer between the convergent flows, and are often characterised by a sharp density jump at their boundaries though not always. (2) However, the clumps are bounded by phase-transition fronts rather than by contact discontinuities, and thus they grow in size and mass mainly by accretion of WNM material through their boundaries. (3) The clump boundaries generally consist of thin layers of thermally unstable gas, but these layers are often widened by the turbulence, and penetrate deep into the clumps. (4) The clumps are approximately in both ram and thermal pressure balance with their surroundings, a condition which causes their internal Mach numbers to be comparable to the bulk Mach number of the colliding WNM flows. (5) The clumps typically have mean temperatures 20 < T < 50 K, corresponding to the wide range of densities they contain (20 < n < 5000 pcc) under a nearly-isothermal equation of state. (6) The turbulent ram pressure fluctuations of the WNM induce density fluctuations that then serve as seeds for local gravitational collapse within the clumps. (7) The velocity and magnetic fields tend to be aligned with each other within the clumps, although both are significantly fluctuating, suggesting that the velocity tends to stretch and align the magnetic field with it. (8) The typical mean field strength in the clumps is a few times larger than that in the WNM. (9) The magnetic field strength has a mean value of B ~ 6 mu G ...Comment: substantially revised version, accepted by MNRAS, 13 pages, 14 figures, high resolution version: http://www.ita.uni-heidelberg.de/~banerjee/publications/MC_Formation_Paper2.pd

    A method for reconstructing the variance of a 3D physical field from 2D observations: Application to turbulence in the ISM

    Full text link
    We introduce and test an expression for calculating the variance of a physical field in three dimensions using only information contained in the two-dimensional projection of the field. The method is general but assumes statistical isotropy. To test the method we apply it to numerical simulations of hydrodynamic and magnetohydrodynamic turbulence in molecular clouds, and demonstrate that it can recover the 3D normalised density variance with ~10% accuracy if the assumption of isotropy is valid. We show that the assumption of isotropy breaks down at low sonic Mach number if the turbulence is sub-Alfvenic. Theoretical predictions suggest that the 3D density variance should increase proportionally to the square of the Mach number of the turbulence. Application of our method will allow this prediction to be tested observationally and therefore constrain a large body of analytic models of star formation that rely on it.Comment: 8 pages, 9 figures, accepted for publication in MNRA

    Comparing the statistics of interstellar turbulence in simulations and observations: Solenoidal versus compressive turbulence forcing

    Full text link
    We study two limiting cases of turbulence forcing in numerical experiments: solenoidal (divergence-free) forcing, and compressive (curl-free) forcing, and compare our results to observations reported in the literature. We solve the equations of hydrodynamics on grids with up to 1024^3 cells for purely solenoidal and purely compressive forcing. Eleven lower-resolution models with mixtures of both forcings are also analysed. We find velocity dispersion--size relations consistent with observations and independent numerical simulations, irrespective of the type of forcing. However, compressive forcing yields stronger turbulent compression at the same RMS Mach number than solenoidal forcing, resulting in a three times larger standard deviation of volumetric and column density probability distributions (PDFs). We conclude that the strong dependence of the density PDF on the type of forcing must be taken into account in any theory using the PDF to predict properties of star formation. We supply a quantitative description of this dependence. We find that different observed regions show evidence of different mixtures of compressive and solenoidal forcing, with more compressive forcing occurring primarily in swept-up shells.Comment: 28 pages, 20 figures, published as Highlight Paper in A&A, 512, A81 (2010); simulation movies available at http://www.ita.uni-heidelberg.de/~chfeder/videos.shtml?lang=e

    The Density Variance Mach Number Relation in the Taurus Molecular Cloud

    Full text link
    Supersonic turbulence in molecular clouds is a key agent in generating density enhancements that may subsequently go on to form stars. The stronger the turbulence - the higher the Mach number - the more extreme the density fluctuations are expected to be. Numerical models predict an increase in density variance with rms Mach number of the form: sigma^{2}_{rho/rho_{0}} = b^{2}M^{2}, where b is a numerically-estimated parameter, and this prediction forms the basis of a large number of analytic models of star formation. We provide an estimate of the parameter b from 13CO J=1-0 spectral line imaging observations and extinction mapping of the Taurus molecular cloud, using a recently developed technique that needs information contained solely in the projected column density field to calculate sigma^{2}_{rho/rho_{0}}. We find b ~ 0.48, which is consistent with typical numerical estimates, and is characteristic of turbulent driving that includes a mixture of solenoidal and compressive modes. More conservatively, we constrain b to lie in the range 0.3-0.8, depending on the influence of sub-resolution structure and the role of diffuse atomic material in the column density budget. We also report a break in the Taurus column density power spectrum at a scale of ~1pc, and find that the break is associated with anisotropy in the power spectrum. The break is observed in both 13CO and dust extinction power spectra, which, remarkably, are effectively identical despite detailed spatial differences between the 13CO and dust extinction maps. [ abridged ]Comment: 8 pages, 9 figures. Accepted for publication in A&

    Gravity or turbulence? II. Evolving column density PDFs in molecular clouds

    Get PDF
    It has been recently shown that molecular clouds do not exhibit a unique shape for the column density probability distribution function (Npdf). Instead, clouds without star formation seem to possess a lognormal distribution, while clouds with active star formation develope a power-law tail at high column densities. The lognormal behavior of the Npdf has been interpreted in terms of turbulent motions dominating the dynamics of the clouds, while the power-law behavior occurs when the cloud is dominated by gravity. In the present contribution we use thermally bi-stable numerical simulations of cloud formation and evolution to show that, indeed, these two regimes can be understood in terms of the formation and evolution of molecular clouds: a very narrow lognormal regime appears when the cloud is being assembled. However, as the global gravitational contraction occurs, the initial density fluctuations are enhanced, resulting, first, in a wider lognormal Npdf, and later, in a power-law Npdf. We thus suggest that the observed Npdf of molecular clouds are a manifestation of their global gravitationally contracting state. We also show that, contrary to recent suggestions, the exact value of the power-law slope is not unique, as it depends on the projection in which the cloud is being observed.Comment: 9 pages, 4 figures. MNRAS, accepte

    Probing the evolution of molecular cloud structure: From quiescence to birth

    Full text link
    Aims: We derive the probability density functions (PDFs) of column density for a complete sample of prominent molecular cloud complexes closer than 200 pc. Methods: We derive near-infrared dust extinction maps for 23 molecular cloud complexes, using the "nicest" colour excess mapping technique and data from the 2MASS archive. The extinction maps are then used to examine the column density PDFs in the clouds. Results: The column density PDFs of most molecular clouds are well-fitted by log-normal functions at low column densities (0.5 mag < A_v < 3-5 mag). However, at higher column densities prominent, power-law-like wings are common. In particular, we identify a trend among the PDFs: active star-forming clouds always have prominent non-log-normal wings. In contrast, clouds without active star formation resemble log-normals over the whole observed column density range, or show only low excess of higher column densities. This trend is also reflected in the cumulative PDFs, showing that the fraction of high column density material is significantly larger in star-forming clouds. These observations are in agreement with an evolutionary trend where turbulent motions are the main cloud-shaping mechanism for quiescent clouds, but the density enhancements induced by them quickly become dominated by gravity (and other mechanisms) which is strongly reflected by the shape of the column density PDFs. The dominant role of the turbulence is restricted to the very early stages of molecular cloud evolution, comparable to the onset of active star formation in the clouds.Comment: 7 pages, 11 figures, accepted to A&A Letter
    corecore