84 research outputs found

    Vesicular Egress of Non-Enveloped Lytic Parvoviruses Depends on Gelsolin Functioning

    Get PDF
    The autonomous parvovirus Minute Virus of Mice (MVM) induces specific changes in the cytoskeleton filaments of infected permissive cells, causing in particular the degradation of actin fibers and the generation of “actin patches.” This is attributed to a virus-induced imbalance between the polymerization factor N-WASP (Wiscott-Aldrich syndrome protein) and gelsolin, a multifunctional protein cleaving actin filaments. Here, the focus is on the involvement of gelsolin in parvovirus propagation and virus-induced actin processing. Gelsolin activity was knocked-down, and consequences thereof were determined for virus replication and egress and for actin network integrity. Though not required for virus replication or progeny particle assembly, gelsolin was found to control MVM (and related H1-PV) transport from the nucleus to the cell periphery and release into the culture medium. Gelsolin-dependent actin degradation and progeny virus release were both controlled by (NS1)/CKIIα, a recently identified complex between a cellular protein kinase and a MVM non-structural protein. Furthermore, the export of newly synthesized virions through the cytoplasm appeared to be mediated by (virus-modified) lysomal/late endosomal vesicles. By showing that MVM release, like entry, is guided by the cytoskeleton and mediated by vesicles, these results challenge the current view that egress of non-enveloped lytic viruses is a passive process

    COPI Is Required for Enterovirus 71 Replication

    Get PDF
    Enterovirus 71 (EV71), a member of the Picornaviridae family, is found in Asian countries where it causes a wide range of human diseases. No effective therapy is available for the treatment of these infections. Picornaviruses undergo RNA replication in association with membranes of infected cells. COPI and COPII have been shown to be involved in the formation of picornavirus-induced vesicles. Replication of several picornaviruses, including poliovirus and Echovirus 11 (EV11), is dependent on COPI or COPII. Here, we report that COPI, but not COPII, is required for EV71 replication. Replication of EV71 was inhibited by brefeldin A and golgicide A, inhibitors of COPI activity. Furthermore, we found EV71 2C protein interacted with COPI subunits by co-immunoprecipitation and GST pull-down assay, indicating that COPI coatomer might be directed to the viral replication complex through viral 2C protein. Additionally, because the pathway is conserved among different species of enteroviruses, it may represent a novel target for antiviral therapies

    G protein-coupled receptors: what a difference a 'partner' makes

    Get PDF
    G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types. Here, we review some of the main interacting proteins of GPCRs. A greater understanding of the mechanisms regulating their interactions may lead to the discovery of new drug targets for therapy

    An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast – Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry

    No full text
    The Western North Atlantic Ocean (WNAO) and adjoining East Coast of North America are of great importance for atmospheric research and have been extensively studied for several decades. This broad region exhibits complex meteorological features and a wide range of conditions associated with gas and particulate species from many sources regionally and other continents. As Part 1 of a 2-part paper series, this work characterizes quantities associated with atmospheric chemistry, including gases, aerosols, and wet deposition, by analyzing available satellite observations, ground-based data, model simulations, and reanalysis products. Part 2 provides insight into the atmospheric circulation, boundary layer variability, three-dimensional cloud structure, properties, and precipitation over the WNAO domain. Key results include spatial and seasonal differences in composition along the North American East Coast and over the WNAO associated with varying sources of smoke and dust and meteorological drivers such as temperature, moisture, and precipitation. Spatial and seasonal variations of tropospheric carbon monoxide and ozone highlight different pathways toward the accumulation of these species in the troposphere. Spatial distributions of speciated aerosol optical depth and vertical profiles of aerosol mass mixing ratios show a clear seasonal cycle highlighting the influence of different sources in addition to the impact of intercontinental transport. Analysis of long-term climate model simulations of aerosol species and satellite observations of carbon monoxide confirm that there has been a significant decline in recent decades among anthropogenic constituents owing to regulatory activities. © 2021. American Geophysical Union. All Rights Reserved.6 month embargo; first published: 11 January 2021This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    High-pressure CO2-enhanced polymer interdiffusion and dissolution studied with in situ ATR-FTIR spectroscopic imaging

    No full text
    International audienceThis paper presents an updated version of the simple 1D radiative-convective H2O-CO2 atmospheric model from Marcq [2012] and used by Lebrun et al. [2013] in their coupled interior-atmosphere model. This updated version includes a correction of a major miscalculation of the outgoing longwave radiation (OLR), and extends the validity of the model (P-coordinate system, possible inclusion of N2, improved numerical stability). It confirms the qualitative findings of Marcq [2012], namely (1) the existence of a blanketing effect in any H2O-dominated atmosphere: the outgoing longwave radiation (OLR) reaches an asymptotic value, also known as Nakajima's limit and first evidenced by Nakajima et al. [1992], around 280W/m2 neglecting clouds, significantly higher than our former estimate from Marcq[2012]. (2) The blanketing effect breaks down for a given threshold temperature Tϵ, with a fast increase of OLR with increasing surface temperature beyond this threshold, making extrasolar planets in such an early stage of their evolution easily detectable near 4μm provided they orbit a red dwarf. Tϵ2O surface pressure, but increasing CO2 pressure leads to a slight decrease of Tϵ. (3) clouds act both by lowering Nakajima's limit by up to 40%, and by extending the blanketing effect, raising the threshold temperature Tϵ by about 10%
    • …
    corecore