10,096 research outputs found

    On the scattering of longitudinal elastic waves from axisymmetric defects in coated pipes

    Get PDF
    This is the post-print version of the final paper published in Journal of Sound and Vibration. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Viscoelastic coatings are widely used to protect pipelines from their surrounding environment. These coatings are known to attenuate ultrasonic waves guided along the pipe walls, which may limit the range of a pulse/echo based inspection technique that seeks to detect defects in a pipeline. This article aims to investigate the attenuation of longitudinal modes in a coated pipe by comparing predicted and measured values for the reflection coefficient of an axisymmetric defect in a pipe coated with bitumen. This extends recent work undertaken by the authors for torsional modes, and also provides an independent investigation into the validity of those values proposed by the authors for the shear properties of bitumen, based on a comparison between prediction and experiment for torsional modes. Predictions are generated using a numerical mode matching approach for axially uniform defects, and a hybrid finite element based method for non-uniform defects. Values for the shear and longitudinal properties of bitumen are investigated and it is shown that the shear properties of the viscoelastic material play a dominant role in the propagation of longitudinal modes in a coated pipeline. Moreover, by using the shear values obtained from experiments on torsional modes, it is shown that good agreement between prediction and measurement for uniform and non-uniform defects may also be obtained for the longitudinal L(0,2) mode. This provides further validation for the shear bulk acoustic properties proposed for bitumen in the low ultrasonic frequency range, although in order to apply this methodology in general it is demonstrated that one must measure independently the reflection coefficient of both the torsional T(0,1) and the longitudinal L(0,2) mode before arriving at values for the shear properties of a viscoelastic material

    Scaling of Anisotropic Flow and Momentum-Space Densities for Light Particles in Intermediate Energy Heavy Ion Collisions

    Get PDF
    Anisotropic flows (v2v_2 and v4v_4) of light nuclear clusters are studied by Isospin-Dependent Quantum Molecular Dynamics model for the system of 86^{86}Kr + 124^{124}Sn at intermediate energy and large impact parameters. Number-of-nucleon scaling of the elliptic flow (v2v_2) are demonstrated for the light fragments up to AA = 4, and the ratio of v4/v22v_4/v_2^2 shows a constant value of 1/2. In addition, the momentum-space densities of different clusters are also surveyed as functions of transverse momentum, in-plane transverse momentum and azimuth angle relative to the reaction plane. The results can be essentially described by momentum-space power law. All the above phenomena indicate that there exists a number-of-nucleon scaling for both anisotropic flow and momentum-space densities for light clusters, which can be understood by the coalescence mechanism in nucleonic degree of freedom for the cluster formation.Comment: 8 pages, 3 figures; to be published in Physics Letters

    Palladium-catalyzed heteroallylation of unactivated alkenes – synthesis of citalopram

    Get PDF
    A palladium-catalyzed difunctionalization of unactivated alkenes with tethered nucleophiles is reported. The versatile reaction occurs with simple allylic halides and can be carried out under air. The methodology provides rapid access to a wide array of desirable heterocyclic targets, as illustrated by a concise synthesis of the widely prescribed antidepressant citalopram

    Regulatory Mechanism of Skeletal Muscle Glucose Transport by Phenolic Acids

    Get PDF
    Type 2 diabetes mellitus (T2DM) is one of the most severe public health problems in the world. In recent years, evidences show a commonness of utilization of alternative medicines such as phytomedicine for the treatment of T2DM. Phenolic acids are the most common compounds in non-flavonoid group of phenolic compounds and have been suggested to have a potential to lower the risk of T2DM. Skeletal muscle is the major organ that contributes to the pathophysiology of T2DM. Studies have shown that several phenolic acids (caffeic acid, chlorogenic acid, gallic acid, salicylic acid, p-coumaric acid, ferulic acid, sinapic acid) have antidiabetic effects, and these compounds have been implicated in the regulation of skeletal muscle glucose metabolism, especially glucose transport. Glucose transport is a major regulatory step for whole-body glucose disposal, and the glucose transport processes are regulated mainly through two different systems: insulin-dependent and insulin-independent mechanism. In this chapter, we reviewed recent experimental evidences linking phenolic acids to glucose metabolism focusing on insulin-dependent and insulin-independent glucose transport systems and the upstream signaling events in skeletal muscle

    Caffeine activates preferentially α1-isoform of 5'AMP-activated protein kinase in rat skeletal muscle.

    Get PDF
    [Aim]: Caffeine activates 5′AMP-activated protein kinase (AMPK), a signalling intermediary implicated in the regulation of glucose, lipid and energy metabolism in skeletal muscle. Skeletal muscle expresses two catalytic α subunits of AMPK, α1 and α2, but the isoform specificity of caffeine-induced AMPK activation is unclear. The aim of this study was to determine which α isoform is preferentially activated by caffeine in vitroand in vivo using rat skeletal muscle. [Methods]: Rat epitrochlearis muscle was isolated and incubated in vitro in the absence or presence of caffeine. In another experiment, the muscle was dissected after intravenous injection of caffeine. Isoform-specific AMPK activity, the phosphorylation status of AMPKα Thr172 and acetyl-CoA carboxylase (ACC) Ser79, the concentrations of ATP, phosphocreatine (PCr) and glycogen, and 3-O-methyl-D-glucose (3MG) transport activity were estimated. [Results]: Incubation of isolated epitrochlearis muscle with 1 mM of caffeine for 15 min increased AMPKα1 activity, but not AMPKα2 activity; concentrations of ATP, PCr and glycogen were not affected. Incubation with 3 mM of caffeine activated AMPKα2 and reduced PCr and glycogen concentrations. Incubation with 1 mM of caffeine increased the phosphorylation of AMPK and ACC and enhanced 3MG transport. Intravenous injection of caffeine (5 mg kg−1) predominantly activated AMPKα1 and increased 3MG transport without affecting energy status. [Conclusion]: Our results suggest that of the two α isoforms of AMPK, AMPKα1 is predominantly activated by caffeine via an energy-independent mechanism and that the activation of AMPKα1 increases glucose transport and ACC phosphorylation in skeletal muscle

    Strong and radiative decays of the Ds0*(2317) meson in the DK-molecule picture

    Full text link
    We consider a possible interpretation of the new charm-strange meson Ds0*(2317) as a hadronic molecule - a bound state of D and K mesons. Using an effective Lagrangian approach we calculate the strong Ds0* to Ds pi0 and radiative Ds0* to Ds* gamma decays. A new impact related to the DK molecular structure of the Ds0*(2317) meson is that the presence of u(d) quarks in the D and K mesons gives rise to a direct strong isospin-violating transition Ds0* to Ds pi0 in addition to the decay mechanism induced by eta-pi0 mixing considered previously. We show that the direct transition dominates over the eta-pi0 mixing transition in the Ds0* to Ds pi0 decay. Our results for the partial decay widths are consistent with previous calculations.Comment: 22 pages, 4 figures, accepted for publication in Phys. Rev.

    Temperature during pregnancy influences the fetal growth and birth size

    Get PDF
    BackgroundBirth weight and length have seasonal fluctuations. However, it is uncertain which meteorological element has an effect on birth outcomes and which timing of pregnancy would explain such effect. Therefore, the purpose of this study was to examine temperature effects during pregnancy and which timing of pregnancy has effects on size at birth.MethodsA large, randomized, controlled trial of food and micronutrient supplementation for pregnant women was conducted in Matlab, Bangladesh (MINIMat Study), where women were enrolled from November 2001 to October 2003. The fetal growth data which included the size at birth and information of their mothers were obtained (n = 3267). Meteorological data such as temperature, precipitation, relative humidity, and daily sunshine hours during pregnancy were observed at the nearest observatory site of Bangladesh Meteorological Department.ResultsInfants born in colder months (November–January) were shorter than those born in hot and dry, and monsoon months (mean (SD) of birth length was 47.5 cm (2.2) vs. 47.8 cm (2.1) vs. 47.9 cm (2.1) respectively; P < 0.001). Increased temperature during the last month of pregnancy was significantly related with increased birth length with adjustment for gestational weeks and the season at birth, and remained significant with further adjustments for precipitation, sex of infants, maternal early-pregnancy BMI, parity, and education status of the mother (P < 0.01). On the other hand, increased temperature at mid-gestation was associated with increased birth weight (P < 0.05).ConclusionsThese findings suggest that temperature affects both birth weight and length. The more temperature increased at the last month of pregnancy, birth length became longer. For birth weight, the temperature at mid-pregnancy affected in a positive way

    Effect of small scale density perturbations on the formation of dark matter halo profiles

    Full text link
    With help of a set of toy N-body models of dark halo formation we study the impact of small scale initial perturbations on the inner density profiles of haloes. We find a significant flattening of the inner slope α=dlogρdlogr\alpha={d \log \rho \over d \log r} to α=0.5\alpha=-0.5 in some range of scales and amplitudes of the perturbations (while in the case of absence of these perturbations the NFW profile with α=1\alpha=-1 is reproduced). This effect may be responsible for the formation of cuspless galactic haloes.Comment: 5 pages, 2 figures, accepted for publication in MNRAS Letter

    A passive transmitter for quantum key distribution with coherent light

    Get PDF
    Signal state preparation in quantum key distribution schemes can be realized using either an active or a passive source. Passive sources might be valuable in some scenarios; for instance, in those experimental setups operating at high transmission rates, since no externally driven element is required. Typical passive transmitters involve parametric down-conversion. More recently, it has been shown that phase-randomized coherent pulses also allow passive generation of decoy states and Bennett-Brassard 1984 (BB84) polarization signals, though the combination of both setups in a single passive source is cumbersome. In this paper, we present a complete passive transmitter that prepares decoy-state BB84 signals using coherent light. Our method employs sum-frequency generation together with linear optical components and classical photodetectors. In the asymptotic limit of an infinite long experiment, the resulting secret key rate (per pulse) is comparable to the one delivered by an active decoy-state BB84 setup with an infinite number of decoy settings.Comment: 10 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1009.383

    Security Analysis of an Untrusted Source for Quantum Key Distribution: Passive Approach

    Get PDF
    We present a passive approach to the security analysis of quantum key distribution (QKD) with an untrusted source. A complete proof of its unconditional security is also presented. This scheme has significant advantages in real-life implementations as it does not require fast optical switching or a quantum random number generator. The essential idea is to use a beam splitter to split each input pulse. We show that we can characterize the source using a cross-estimate technique without active routing of each pulse. We have derived analytical expressions for the passive estimation scheme. Moreover, using simulations, we have considered four real-life imperfections: Additional loss introduced by the "plug & play" structure, inefficiency of the intensity monitor, noise of the intensity monitor, and statistical fluctuation introduced by finite data size. Our simulation results show that the passive estimate of an untrusted source remains useful in practice, despite these four imperfections. Also, we have performed preliminary experiments, confirming the utility of our proposal in real-life applications. Our proposal makes it possible to implement the "plug & play" QKD with the security guaranteed, while keeping the implementation practical.Comment: 35 pages, 19 figures. Published Versio
    corecore