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Abstract

Anisotropic flows (v2 and v4) of light nuclear clusters are studied by isospin-dependent quantum molecular dynamics model for the system
of 86Kr + 124Sn at intermediate energy and large impact parameters. Number-of-nucleon scaling of the elliptic flow (v2) are demonstrated for
the light fragments up to A = 4, and the ratio of v4/v2

2 shows a constant value of 1/2. In addition, the momentum-space densities of different
clusters are also surveyed as functions of transverse momentum, in-plane transverse momentum and azimuth angle relative to the reaction plane.
The results can be essentially described by momentum-space power law. All the above phenomena indicate that there exists a number-of-nucleon
scaling for both anisotropic flow and momentum-space densities for light clusters, which can be understood by the coalescence mechanism in
nucleonic degree of freedom for the cluster formation.
© 2006 Elsevier B.V.
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Anisotropic flow is of interesting subject in theoretical and
experimental investigations on nuclear reaction dynamics in in-
termediate and high energy heavy-ion collisions [1–10]. Many
studies of the dependences of the 1th and 2nd anisotropic flows
(the directed flow and elliptic flow, respectively) on beam ener-
gies, mass number or quark number, isospin and impact para-
meter revealed much interesting physics about the properties
and origin of the collective flow. In particular, recent ultra-
relativistic Au + Au collision experiments demonstrated the
number of constituent-quark (NCQ) scaling from the transverse
momentum dependent elliptic flow for the different mesons
and baryons at the Relativistic Heavy Ion Collider (RHIC) in
Brookhaven National Laboratory [11], it indicates that the par-
tonic degree of the freedom plays a dominant role in formation
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of the dense matter in the early stage of collisions. Several
theoretical models have been successfully proposed to inter-
pret the NCQ-scaling of hadrons at RHIC [12–16]. In these
studies, a popular interpretation is assuming that the mesons
and baryons are formed by the coalescence or recombination
of the constituent quarks. Moving to the intermediate energy
heavy ion collisions, the coalescence mechanism has been also
used to explain the formation of light particles and fragments
[17–21]. In these studies, however, most observables which one
focused on are the spectra of kinetic energy or momentum of
light particles. While a few studies investigated the mass de-
pendence of the directed flow [22,23]. Systematic theoretical
studies on the flow and momentum space densities of differ-
ent fragments in intermediate energy domain in terms of the
coalescence mechanism are still rare. In this context, we sur-
vey, for the first time to our knowledge, the nucleon number
dependence of the anisotropic flows v2 and v4 in the intermedi-
ate energy heavy-ion collisions with the coalescence scenario.
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Moreover, the power law behaviors of light fragment produc-
tion in momentum space are also explored in our model simu-
lation. Note that this power law behaviors have been experimen-
tally demonstrated in violent collisions at the beam energies
between 0.1A and 15A GeV [24]. In this Letter we use isospin-
dependent molecular dynamics (IDQMD) model to simulate
86Kr + 124Sn at 25 MeV/nucleon and larger impact parame-
ters (b = 7–10 fm), and investigate the outcome of nucleonic
coalescence mechanism on the anisotropic flows and momen-
tum space densities of light particle production in intermediate
energy heavy ion collisions.

Anisotropic flow is defined as the different nth harmonic co-
efficient vn of an azimuthal Fourier expansion of the particle
invariant distribution [2]

(1)
dN

dφ
∝ 1 + 2

∞∑
n=1

vn cos(nφ),

where φ is the azimuthal angle between the transverse mo-
mentum of the particle and the reaction plane. Note that in the
coordinate system the z-axis along the beam axis, and the im-
pact parameter axis is labelled as x-axis. The first harmonic
coefficient v1 represents the directed flow, v1 = 〈cosφ〉 = 〈px

pt
〉,

where pt =
√

p2
x + p2

y is transverse momentum. v2 represents

the elliptic flow which characterizes the eccentricity of the par-
ticle distribution in momentum space,
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p2
t

〉
,

and v4 represents the 4th momentum anisotropy,

(3)v4 =
〈
p4

x − 6p2
xp

2
y + p4

y

p4
t

〉
.

The model we are using in the present work is based on the
quantum molecular dynamics (QMD) approach which is an
n-body theory to describe heavy ion reactions from interme-
diate energy to 2 A GeV. It includes several important parts:
the initialization of the target and the projectile nucleons, the
propagation of nucleons in the effective potential, the collisions
between the nucleons, the Pauli blocking effect and the numer-
ical tests. A general review about QMD model can be found
in [25]. The IDQMD model is based on QMD model affiliating
the isospin factors, which includes the mean field, two-body
nucleon–nucleon (NN) collisions and Pauli blocking [26–30].

In the QMD model each nucleon is represented by a
Gaussian wave packet with a width

√
L (here L = 2.16 fm2)

centered around the mean position �ri(t) and the mean momen-
tum �pi(t),

(4)

ψi(�r, t) = 1

(2πL)3/4
exp

[
− (�r − �ri(t))2

4L

]
exp

[
− i�r · �pi(t)

h̄

]
.

The nucleons interact via nuclear mean field and nucleon–
nucleon collision. The nuclear mean field can be parameterized
by
U(ρ, τz) = α

(
ρ

ρ0

)
+ β

(
ρ

ρ0

)γ

+ 1

2
(1 − τz)Vc

(5)+ Csym
(ρn − ρp)

ρ0
τz + UYuk

with ρ0 the normal nuclear matter density (here, 0.16 fm−3 is
used). ρ, ρn and ρp are the total, neutron and proton densi-
ties, respectively. τz is zth component of the isospin degree of
freedom, which equals 1 or −1 for neutrons or protons, respec-
tively. The coefficients α, β and γ are parameters for nuclear
equation of state (EOS). Csym is the symmetry energy strength
due to the difference of neutron and proton. In the present
work, we take α = −124 MeV, β = 70.5 MeV and γ = 2.0
which corresponds to the so-called hard EOS with an incom-
pressibility of K = 380 MeV and Csym = 32 MeV [25]. Vc is
the Coulomb potential and UYuk is Yukawa (surface) potential
which has the following form:

UYuk = Vy

2m

∑
i 	=j

1

rij
exp

(
Lm2)

× [
exp(−mrij ) erf

(√
Lm − rij /

√
4L

)
(6)− exp(mrij ) erf

(√
Lm + rij /

√
4L

)]
with Vy = 0.0074 GeV, m = 1.25 fm−1 and L = 2.16 fm2. The
relative distance rij = |�ri − �rj |. Experimental in-medium NN
cross section parametrization which is energy and isospin de-
pendent is used in this work.

The Pauli blocking effect in IDQMD model is treated sepa-
rately for the neutron and the proton: whenever a collision oc-
curs, we assume that each nucleon occupies a six-dimensional
sphere with a volume of h̄3/2 in the phase space (considering
the spin degree of freedom), and then calculate the phase vol-
ume, V , of the scattered nucleons being occupied by the rest
nucleons with the same isospin as that of the scattered ones.
We then compare 2V/h̄3 with a random number and decide
whether the collision is blocked or not.

In the QMD model, the initial momentum of nucleons is gen-
erated by means of the local Fermi gas approximation. The local
Fermi momentum is given by:

(7)P i
F (�r) = h̄

(
3π2ρi(�r)

)1/3
, i = n,p.

In the model, the radial density can be written as:

ρ(r) =
∑

i

1

(2πL)3/2
exp

(
− r2 + r2

i
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)
L
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(8)×
[
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L

)
− exp

(
− rri

L

)]
.

The time evolution of the colliding system is given by the gen-
eralized variational principal. Since the QMD can naturally de-
scribe the fluctuation and correlation, we can study the nuclear
clusters in the model [25–30]. In QMD model, nuclear clusters
are usually recognized by a simple coalescence model: i.e. nu-
cleons are considered to be part of a cluster if in the end at least
one other nucleon is closer than rmin � 3.5 fm in coordinate
space and pmin � 300 MeV/c in momentum space [25]. This
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Fig. 1. (a) Elliptic flow as a function of transverse momentum (pt ). Squares
represent for neutrons, circles for protons, triangles for fragments of A = 2,
diamonds for A = 3 and stars for A = 4; (b) Elliptic flow per nucleon as a
function of transverse momentum per nucleon. The symbols are the same as (a).

mechanism has been extensively applied in transport theory for
the cluster formation.

Now we move to the calculations. For an example, we sim-
ulated 86Kr + 124Sn at 25 MeV/nucleon and impact parameter
of 7–10 fm. 50,000 events have been accumulated. The systems
tend to freeze-out around 120 fm/c. In this Letter, we extract
the following physics results at 200 fm/c. The upper panel of
Fig. 1 shows transverse momentum dependence of elliptic flows
for mid-rapidity light fragments. The range of transverse mo-
mentum for different fragments is different according to their
masses. From the figure, it shows that the elliptic flow is pos-
itive and it increases with the increasing pt . It reflects that
the light clusters are preferentially emitted within the reaction
plane, and particles with higher transverse momentum tend to
be strongly emitted within in-plane, i.e. stronger positive ellip-
tic flow. In comparison to the elliptic flow at RHIC energies, the
apparent behavior of elliptic flow versus pt looks similar, but
the mechanism is obviously different. In intermediate energy
domain, collective rotation is one of the main mechanisms to
induce the positive elliptic flow [31–36]. In this case, the ellip-
tic flow is mainly driven by the attractive mean field. However,
the strong pressure which is built in early initial geometrical
almond-type anisotropy due to the overlap zone between both
colliding nuclei in coordinate space will rapidly transforms into
the azimuthal anisotropy in momentum space at RHIC ener-
gies [11]. In other words, the elliptic flow is mainly driven by
the stronger outward pressure. The lower panel displays the el-
liptic flow per nucleon as a function of transverse momentum
per nucleon, and it looks that there exists the number of nucleon
scaling when pt/A < 0.25 GeV/c. This behavior is apparently
similar to the number of constituent quarks scaling of elliptic
flow versus transverse momentum per constituent quark (pt/n)
for mesons and baryons which was observed at RHIC [11].

The RHIC experimental data demonstrated a scaling re-
lationship between 2nd flow (v2) and nth flow (vn), namely
vn(pt ) ∼ v

n/2
2 (pt ) [37]. It has been shown [38,39] that such

scaling relation follows from a naive quark coalescence model
[13] that only allows quarks with equal momentum to form
a hadron. Denoting the meson anisotropic flows by vn,M(pt )

and baryon anisotropic flows by vn,B(pt ), Kolb et al. found
that v4,M(pt ) = (1/4)v2

2,M(pt ) for mesons and v4,B(pt ) =
(1/3)v2

2,B(pt ) for baryons if quarks have no higher-order
anisotropic flows. Since mesons dominate the yield of charged
particles in RHIC experimental data, the smaller scaling factor
of 1/4 than the empirical value of about 1 indicates that higher-
order quark anisotropic flows cannot be neglected. Including
the latter contribution, one can show that

(9)
v4,M

v2
2,M

≈ 1

4
+ 1

2

v4,q

v2
2,q

,

and

(10)
v4,B

v2
2,B

≈ 1

3
+ 1

3

v4,q

v2
2,q

,

where vn,q denotes the quark anisotropic flows. The meson
anisotropic flows thus satisfy the scaling relations if the quark
anisotropic flows also satisfy such relations. However, this ra-
tio is experimentally determined to be 1.2 [40], which means
that the fourth-harmonic flow of quarks v

q

4 must be greater than
zero. One can go one step further and assume that the observed
scaling of the hadronic v2 actually results from a similar scaling
occurring at the partonic level. In this case v

q

4 = (v
q

2 )2 and the
hadronic ratio v4/v

2
2 then equals 1/4 + 1/2 = 3/4 for mesons

and 1/3 + 1/3 = 2/3 for baryons, respectively. Again, since
this value is measured to be 1.2, even the partonic v

q

4 must be
greater than simple scaling and quark coalescence models pre-
dict.

Recognizing the above behaviors of the flows at RHIC ener-
gies, we would like to know what the higher order momentum
anisotropy in the intermediate energy is. So far, there is neither
experimental data nor theoretical investigation for the higher
order flow, such as v4, in this energy domain. In the present
Letter, we explore the behavior of v4 in the model calculation.
Fig. 2 shows the feature of v4. Similar to the relationship of
v2/A versus pt/A, we plot v4/A as a function of pt/A. The
divergence of the different curves between different particles
in Fig. 2(a) indicates no simple scaling of nucleon number for
4th momentum anisotropy. However, if we plot v4/A

2 versus
(pt/A)2, it looks that the points of different particles nearly
merge together and it means a certain of scaling holds between
two variables. Due to a nearly constant value of v4/v

2
2 in the

studied pt range (see Fig. 2(c)) together with the number-of-
nucleon scaling behavior of v2/A vs pt/A, v4/A

2 should scale
with (pt/A)2, as shown in Fig. 2(b). If we assume the scal-
ing laws of mesons (Eq. (9)) and baryons (Eq. (10)) are also
valid for A = 2 and 3 nuclear clusters, respectively, then v4/v

2

2
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Fig. 2. (a) v4/A as a function of pt /A for different particles, namely, neutrons
(squares), protons (circles), fragments of A = 2 (triangles), A = 3 (diamonds)
and A = 4 (stars). (b) v4/A2 as a function of (pt /A)2. (c) The ratios of v4/v2

2
for different particles vs pt .

for A = 2 and 3 clusters indeed give the same value of 1/2 as
nucleons, as shown in Fig. 2(c). Coincidentally the predicted
value of the ratio of v4/v

2
2 for hadrons is also 1/2 if the mat-

ter produced in ultra-relativistic heavy ion collisions reaches to
thermal equilibrium and its subsequent evolution follows the
laws of ideal fluid dynamics [41]. It is interesting to note the
same ratio was predicted in two different models at very differ-
ent energies, which is of course worth to be further investigated
in near future. Overall speaking, we learn that v4/v

2
2 is approx-

imately 1/2 in nucleonic level coalescence mechanism, which
is different from 3/4 for mesons or 2/3 for baryons in partonic
level coalescence mechanism.

Measurements of inclusive single-particle spectra from
heavy-ion collisions indicate a simple empirical pattern of light
fragment production: the observed invariant momentum-space
density ρA for fragments with mass number A closely follows
the Ath power of the observed proton density ρA

1 . It was shown
that this power law behavior is valid for spectra of participant
fragments up to A = 14 with projectiles ranging from pro-
tons to Au at a variety of beam energies between 0.1A and
15A GeV [24]. However, there are rare experimental data and
calculations to test the power law at intermediate energies. In
the present work, we test the momentum-space power law up to
A = 4 by IDQMD.

The upper panels of Fig. 3 show the transverse momen-
tum space densities ρ = A2 dN/pt dpt . The results also show a
level of adherence to power law behavior at high pt/A, which
is similar to what have been previously reported for single-
particle-inclusive measurements [42], and reflects the persis-
Fig. 3. Upper panels: transverse momentum-space density for light fragments;
Middle panels: in-plane transverse momentum space density; Bottom panels:
azimuthal distributions relative to the reaction plane. The open squares repre-
sent the density for protons, the solid circles for the fragments with A = 2, the
open circles for the proton density squared normalized to the same area as the
proton density, the solid triangles for A = 3, the open triangles for protons to
the power of 3, the solid diamonds for A = 4, the open diamonds for protons to
the power of 4, and the stars for the A = 2 density squared.

tence of momentum-space coalescence behavior for intermedi-
ate energy 86Kr + 124Sn collisions. The middle panels of Fig. 3
depict the density in the in-plane transverse momentum space
(px/A). The densities are also normalized to the same area as
the proton density. Wang et al. first introduced the momentum-
space power law to ρ(px) [42]. Again, our results show a level
of adherence to power law behavior. The bottom panels of Fig. 3
depicts the azimuthal (φ) distribution of fragments relative to
the reaction plane. The factor k is chosen so that the mean
values of dN/dφ are fixed to be 1. Essentially the power-law
behavior remains for the azimuthal distributions of these light
fragments. From all the above distributions, nucleon coales-
cence mechanism keeps valid in the momentum space densities.

In summary, we applied IDQMD model to investigate the
behavior of anisotropic flows, namely v2 and v4, versus trans-
verse momentum for the light fragments from 25 MeV/nucleon
86Kr + 124Sn collisions at 7–10 fm of impact parameters. Both
v2 and v4 generally show positive values and increase with pt .
By the number-of-nucleon scaling, the curves of elliptic flow
for different fragments approximately collapse on the similar
curve, which means that there exists an elliptic flow scaling
on the nucleon number for light fragments. This phenomenon
is similar to the NCQ scaling of elliptic flows of hadrons at
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RHIC energies where elliptic flow can be developed in the early
partonic stage of collisions, but here it is a nucleonic level in
intermediate energy collisions. For 4th momentum anisotropy
v4, it seems to be scaled by v2

2 and v4/v
2
2 ∼ 0.5. It will be of

very interesting if one can measure this ratio in intermediate
energy HIC. In addition, we also investigated momentum-space
densities of light fragments as functions of fragment transverse
momentum pt , in-plane transverse momentum px and the az-
imuth angle relative to the reaction plane. All these observables
are well described by the momentum-space power law which
has been well experimentally observed at high energies. All the
above phenomena can be seen as an outcome of the nucleonic
coalescence which results that the number-of-nucleon scaling
of both flow and momentum space density in intermediate en-
ergy heavy ion collision. It may indicate that nucleonic matter
may be one of the middle transit stage before chemical freeze-
out takes place.
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