6,991 research outputs found
Balanced Tripartite Entanglement, the Alternating Group A4 and the Lie Algebra
We discuss three important classes of three-qubit entangled states and their
encoding into quantum gates, finite groups and Lie algebras. States of the GHZ
and W-type correspond to pure tripartite and bipartite entanglement,
respectively. We introduce another generic class B of three-qubit states, that
have balanced entanglement over two and three parties. We show how to realize
the largest cristallographic group in terms of three-qubit gates (with
real entries) encoding states of type GHZ or W [M. Planat, {\it Clifford group
dipoles and the enactment of Weyl/Coxeter group by entangling gates},
Preprint 0904.3691 (quant-ph)]. Then, we describe a peculiar "condensation" of
into the four-letter alternating group , obtained from a chain of
maximal subgroups. Group is realized from two B-type generators and found
to correspond to the Lie algebra . Possible
applications of our findings to particle physics and the structure of genetic
code are also mentioned.Comment: 14 page
Security Implications of Running Windows Software on a Linux System Using Wine
Linux is considered to be less prone to malware compared to other operating systems, and as a result Linux users rarely run anti-malware. However, many popular software applications released on other platforms cannot run natively on Linux. Wine is a popular compatibility layer for running Windows programs on Linux. The level of security risk that Wine poses to Linux users is largely undocumented. This project was conducted to assess the security implications of using Wine, and to determine if any specific types of malware or malware behavior have a significant effect on the malware being successful in Wine. Dynamic analysis (both automated and manual) was applied to 30 malware samples both in a Windows environment and Linux environment running Wine. Behavior analyzed included file system, registry, and network access, and the spawning of processes, and services. The behavior was compared to determine malware success in Wine. The study results provide evidence that Wine can pose serious security implications when used to run Windows software in a Linux environment. Five samples of Windows malware were run successfully through Wine on a Linux system. No significant relationships were discovered between the success of the malware and its high-level behavior or malware type. However, certain API calls could not be recreated in a Linux environment, and led to failure of malware to execute via Wine. This suggests that particular malware samples that utilize these API calls will never run completely successfully in a Linux environment. As a consequence, the success of some samples can be determined from observing the API calls when run within a Windows environment
Search for sterile neutrino mixing in the MINOS long-baseline experiment
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3>2.1×10-12¿¿s/eV at 90% C.L
Recommended from our members
New constraints on muon-neutrino to electron-neutrino transitions in MINOS
This paper reports results from a search for ν_μ → ν_e transitions by the MINOS experiment based on a 7×10^(20) protons-on-target exposure. Our observation of 54 candidate ν_e events in the far detector with a background of 49.1±7.0(stat)±2.7(syst) events predicted by the measurements in the near detector requires 2sin^2(2θ_(13))sin^2θ_(23)<0.12(0.20) at the 90% C.L. for the normal (inverted) mass hierarchy at δ_(CP)=0. The experiment sets the tightest limits to date on the value of θ_(13) for nearly all values of δ_(CP) for the normal neutrino mass hierarchy and maximal sin^2(2θ_(23))
Recommended from our members
Search for sterile neutrino mixing in the MINOS long-baseline experiment
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×10^(20) protons on target in which neutrinos of energies between ∼500 MeV and 120 GeV are produced predominantly as ν_μ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ν_μ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles θ_(24) and θ_(34) are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime τ_3/m_3>2.1×10^(-12) s/eV at 90% C.L
Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector
A search for a sidereal modulation in the MINOS near detector neutrino data
was performed. If present, this signature could be a consequence of Lorentz and
CPT violation as predicted by a class of extensions to the Standard Model. No
evidence for a sidereal signal in the data set was found, implying that there
is no significant change in neutrino propagation that depends on the direction
of the neutrino beam in a sun-centered inertial frame. Upper limits on the
magnitudes of the Lorentz and CPT violating terms in these extensions to the
Standard Model lie between 0.01-1% of the maximum expected, assuming a
suppression of these signatures by factor of .
Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter
This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered
Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up
Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
