
Journal of Computer Virology and Hacking Techniques
https://doi.org/10.1007/s11416-018-0319-9

ORIG INAL PAPER

Security implications of running windows software on a Linux system
usingWine: a malware analysis study

Rory Duncan1 · Z. Cliffe Schreuders1

Received: 13 April 2017 / Accepted: 22 March 2018
© The Author(s) 2018

Abstract
Linux is considered to be less prone to malware compared to other operating systems, and as a result Linux users rarely
run anti-malware. However, many popular software applications released on other platforms cannot run natively on Linux.
Wine is a popular compatibility layer for running Windows programs on Linux. The level of security risk that Wine poses to
Linux users is largely undocumented. This project was conducted to assess the security implications of using Wine, and to
determine if any specific types of malware or malware behavior have a significant effect on the malware being successful in
Wine. Dynamic analysis (both automated and manual) was applied to 30 malware samples both in a Windows environment
and Linux environment runningWine. Behavior analyzed included file system, registry, and network access, and the spawning
of processes, and services. The behavior was compared to determine malware success in Wine. The study results provide
evidence that Wine can pose serious security implications when used to run Windows software in a Linux environment. Five
samples of Windows malware were run successfully through Wine on a Linux system. No significant relationships were
discovered between the success of the malware and its high-level behavior or malware type. However, certain API calls could
not be recreated in a Linux environment, and led to failure of malware to execute via Wine. This suggests that particular
malware samples that utilize these API calls will never run completely successfully in a Linux environment. As a consequence,
the success of some samples can be determined from observing the API calls when run within a Windows environment.

Keywords Malware analysis · Malware compatibility · Linux · Wine

1 Introduction

The relative security of operating systems has long been the
subject of debate. Linux compares favorably toWindows and
Mac OS X in terms of security features, such as mandatory
access controls and file permissions. It has also been sug-
gested that the availability of source code allows Linux bugs
and security related programming issues to be easily spotted
and patched by the community [18]. Linus’s Law states that
“given enough eyeballs, all bugs are shallow” [11]. Although
malware exists that targets Linux systems, this is relatively
rare: the majority of malware targets Windows systems (in
part due to targeting of market share). Furthermore, Linux
software repositories provide a trusted source for software
installation, which also reduces the likelihood of malware on

B Z. Cliffe Schreuders
c.schreuders@leedsbeckett.ac.uk

1 Cybercrime and Security Innovation (CSI) Centre, Leeds
Beckett University, Headingley Campus, Leeds LS6 3QS, UK

Linux. Common practice is to not run anti-malware software
on Linux systems.

However, many software developers do not create their
software for Linux, and choose to focus on creating packages
for operating systems with the highest market shares, such
as Windows, which has traditionally held the highest mar-
ket share of desktop PCs and laptops. This results in Linux
users needing compatibility layer software if they wish to run
Windows software on their Linux operating system. Wine is
the defacto compatibility layer for runningWindows applica-
tions on POSIX-compliant operating systems, such as Linux,
Mac OS X, and BSD.

Wine works by translating functions that are Windows
specific into a format that can be understood by Linux (or
other POSIX systems) [19]. The use of compatibility layer
softwaremaypresent a security threat toLinuxusers. The fact
that it enablesWindows software to run inLinux environment
introduces the possibility of running Windows malware on
an otherwise secure Linuxmachine. The level of security risk
that Wine poses to Linux users is largely undocumented.

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leeds Beckett Repository 

https://core.ac.uk/display/154428019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-018-0319-9&domain=pdf


R. Duncan, Z. C. Schreuders

This paper describes a study conducted to investigate the
level of threat that the use of Wine potentially presents to
Linux systems, and to determine if any specific types of mal-
ware or malware behavior have a significant effect on the
malware being successful in Wine. In this study, thirty sam-
ples ofWindows malware were run inWindows and then run
on a Linux system usingWine. Dynamic analysis (both auto-
mated and manual) was compared to assess how successful
each sample of malware was in terms of running in the Linux
environment.

2 Literature review

2.1 Malware analysis

The term malware refers to malicious software created with
the intention of compromising a computer system or destroy-
ing data [16].Davis et al. (2009) note thatmalware potentially
offers malicious coders a large return on the investment of
time spent developing malware and that this is possibly a
reason why malware is such a widespread threat in the com-
puting field [4]. Elisan (2012) also believes that the reason
that malware is so popular among cyber-criminals is because
of the potentially high financial gain [5]. Elisan (2012) pro-
ceeds to comment that malware analysis plays a vital role in
computer security as in order to defend computer systems
against threats frommalware it is essential that knowledge is
gained into exactlywhat themalware is doing on a system [5].

The term dynamic analysis refers to the process of running
a malicious sample of code on a computer system with the
intention of studying its behavior by recording API calls,
processes and network activity [7]. Marak (2015) comments
that the term static malware analysis was coined to cover
analysis techniques that involve viewing the binary code of
a malicious sample, which is often done using disassembler
software [7].

Malin et al. (2012) state that using a mixture of static
analysis and dynamic analysis is the most effective form of
malware analysis [8]. This view is also confirmed by Seo et
al. (2014)who comment that both dynamic and static analysis
have limitations, to overcome these limitations it is essential
to use a combination of both techniques [13].

2.2 Malware analysis techniques

Elisan (2012) states that static analysis would seem like the
obvious choice for malware in terms of ease and efficiency;
however, he also notes that the results gathered during a static
analysis are less useful as the malware is inactive when ana-
lyzed [5]. The observations of Ahmadi et al. (2013) on static
analysis, hold a similar view to Elisan on using static analy-
sis and comment malicious coders can utilize a diverse range

of techniques that make static analysis of malware inaccu-
rate, they mention that the techniques used include entry
point obfuscation code packing and control flow [1]. Vid-
yarthi (2015) confirms this view expressing that if a sample
of malware is packed, encrypted, complex or a large sam-
ple a static analysis can become very difficult [2]. Shijo
et al. (2015) also agree with this, stating that polymorphic
and metamorphic samples fail in a static analysis as do any
malware samples that have been created using obfuscation
techniques with the intention of making them harder to ana-
lyze [15]. They state that dynamic analysis of malware is not
affected by these techniques; this makes it vital in malware
analysis. Sharif et al. (n.d) agree with this view and mention
that because of techniques that effect static analysis of code
such as obfuscations and packers, dynamic analysis is gener-
ally the technique adopted by software designed to automate
malware analysis [14].

Shijo et al. (2015) note that the main drawbacks to
dynamic analysis are that each sample must be run indi-
vidually in a sandboxed testing environment, which is
time-consuming, and that the results of a dynamic analy-
sis may be inaccurate as malware may behave different in a
secure environment and some malware may wait for certain
dates or times before executing, which means some of the
functions of the malware may not be detected [15]. This is
agreed by Liangboonprakong et al. (2013) who also com-
ment that the infection of the test system could be dependent
on vulnerable software being installed in the test environ-
ment [6]. The project described in this paper focused mainly
on the behavioural dynamic analysis of malware; as the aim
of the project was to determine if malware behaves dif-
ferently in a particular environment, static analysis is less
relevant.

2.3 Malware analysis tools

Ligh et al. (2010) recommends the software Anubis for ana-
lyzingWindowsbinaries; further research concluded thiswas
not a suitable choice for the project as the software has been
discontinued [7]. Shijo et al. (2015) note that a useful tool
for dynamic malware analysis is Cuckoo Sandbox, this pro-
gram generates a report that contains a list of API calls made
by the malware when it was executed in a secure environ-
ment [15]. Provataki et al. (2013) remark that the software
Cuckoo Sandbox is a new piece of software that is written
in Python, they state that the software is fast and efficient
when performing malware analysis. It has built-in character-
istics that ensure stealth when the malware is running in the
secure environment, this ensures it remains undetected by the
malware running in the analysis environment and the results
should be very accurate [10].

Vasilescu et al. (2014) remark that a range of websites
can be used as dynamic analysis tools, these are however

123



Security implications of running windows software on a Linux system using Wine: a malware…

generally an inaccurate method of dynamically analyzing
malware as they have limited registry keys and installed
applications [17]. Examples of online dynamic analysers are
Anubis and Malwr, an analyser based on Cuckoo Sandbox.
Online analysis environments were not used in the project
as it is imperative that accurate results are gathered from the
dynamic analysis. The accuracy of the results of online anal-
ysis programs is questionable as the malware may attempt to
utilize software orwrite to registry keys that are not present on
the system, causing the API calls to be unsuccessful. Cuckoo
Sandbox was used in the project as it is free open source soft-
ware and it has a large list of features that aided in the dynamic
analysis of malware. Cuckoo Sandbox also has a useful fea-
ture that scans a file againstmultiple anti-virus programs, this
can be used to determine if the malware is detected by Clam-
AV (one of the most popular Linux anti-malware suites).

The most relevant tool to analyze the effects of malware
in Linux was Zero Wine. Vasilescu et al. (2014) note that
Zero Wine is a valuable tool for analyzing Windows appli-
cations in Wine. The software would be a useful tool for this
project as it allows a dynamic analysis of Windows malware
running in Wine [17]. Vasilescu et al. (2014) also comment
that Zero Wine will only run applications that are designed
to run onWindows, this is useful as during the analysis stage
of the project it was paramount to choose samples that will
run in Zero Wine [17]. Malin et al. (2012) mention that Zero
Wine Tryouts is a branch of the original Zero Wine project
and that this version has more features integrated into the
software [8]. For this research, Zero Wine Tryouts was the
malware analysis framework of choice for the Linux envi-
ronment testing.

2.4 Malware on wine and related research

Codeweavers (2008) comment that the use ofWindows emu-
lation or compatibility layer software can make an otherwise
secure system such as a Linux-based operating system vul-
nerable toWindowsmalware [3].Moen (2005) created a brief
report on some of his findings when running Windows mal-
ware in a Linux environment using Wine [9]. The findings
in Moen’s report support Codeweavers (2008) comments as
one of the malware samples appeared to have successfully
run in Wine. Overall the majority of the malware did not
appear to have run successfully which would imply there is a
low success rate with malware that can actually compromise
a Linux computer when running in Wine. There is a substan-
tial gap in the research literature regarding the relevance of
these warnings, and whether malware samples will actually
run inWine and be capable of compromising a Linux system.
This lack of research was a key motivation for this project to
provide further insight.

3 Aims

The aimof thismalware analysis studywas to assess the secu-
rity implications of running Windows software on a Linux
system using Wine. The research focused on analyzing the
effects of Windows malware within a Linux environment
running Windows compatibility software. The study aimed
to analyze howdifferentmalicious samples behaved in aWin-
dows environment and a Linux environment through Wine.
The collected results from the two environments were com-
pared, this comparison was used to determine the success
of each malware sample when running in Wine, overall and
in terms of categories of behaviour(filesystem, registry, pro-
cesses, networking, services). The research project collected
this data to assess infection success factors, including if any
relationships could be discovered between specific types of
malware or malware behavior and the malware being suc-
cessful when running in Wine. Relationships were assessed
using statistical tests on the data collected at the analysis stage
of the project. The project also aimed to develop recommen-
dations for Linux users who choose to use the softwareWine,
the results of the study were also used to determine the threat
level that Wine poses to Linux users.

The working hypothesis was that high-level behavioral
characteristics and file attributes of malware samples would
have a large effect on the malware’s ability to run success-
fully through Wine. The behaviors being assessed were: the
malware making changes to the file system, making changes
to the registry, starting processes, network traffic, the num-
ber of files dropped/created, and the number of processes
spawned. The file attributes that were being assessed were;
the file size of the malware, the compile date of the malware
and the category of the malware.

4 Methods

4.1 Malware samples

The 30 malware samples collected for use during this study
were downloaded from online malware repositories. The
primary sources that were used were the malware sharing
websites Contagio, KernelMode.info, Malware.lu and VX
Vault. These were selected as the primary sources as they had
an extensive selection of malicious software that is available
for download, this approach also ensured variety in the types
of malware analyzed. Ten malware samples were collected
from Contagio and Kernelmode.info, four from Malware.lu.
Six samples were also acquired fromVXVault to ensure that
more recent (and before analysis, unidentified) samples were
included in the study.

123



R. Duncan, Z. C. Schreuders

4.2 Analysis environment

Two malware analysis environments were required. The first
environment was necessary to test the malware in aWindows
environment; this would be used to establish how the mal-
ware acts when it is run on a vulnerable computer system.
The second malware analysis environment was used to run
the malware in Linux. Analysis results were collected from
both environments; theses results contained details about the
samples behavior in different areas including registry, pro-
cesses, network, file system and services. The testing results
from both environments were compared to assess if the mal-
ware had behaved the same in Wine as it did in the Windows
environment.

The software chosen to analyze themalware in aWindows
environment was Cuckoo Sandbox. The software is written
in Python and has the ability to analyze malware in an auto-
mated manner [10]. Cuckoo Sandbox allows malware to run
in a sandboxed environment and then provides a detailed
report that contains information on the malware’s activity in
multiple areas including network, services, file system, reg-
istry and processes.

Zero Wine Tryouts was also used in this study, this soft-
ware was utilized as its primary function is to analyze how
Windows malware behaves in a Linux environment running
Wine [17]. The software records the API calls that are exe-
cuted throughWine, ZeroWine Tryouts then creates a report
detailing this information which can be used to assess the
behavior of the malware and to identify the calls made on
the system [20]. Other tools (such as debuggers and system
call tracers) were used to further inspect processes and verify
results from the automated analysis tools.

4.3 Analysis methodology

A methodology was developed to establish continuity
between the analysis of each sample and guarantee that
all necessary data was collected. The image documented
in Fig. 1 demonstrates an extract from the book Mal-
ware Forensics Field Guide for Windows Systems, the
extract details steps to analyzing malware. This was one
source that was utilized in order to create a malware anal-
ysis methodology. Some of the steps noted in this source
were impractical to implement into the project, for exam-
ple doing an advanced static examination of the portable
executable file is not appropriate for this project as the
focus of this work is studying the behavior of malware in
a Linux environment. A static analysis may still be appro-
priate to depict details such as the compile date of the
malware.

Further research was completed into a framework for
the malware analysis testing, a useful methodology was
discovered on the Secfence website. The methodology is

Fig. 1 Guidelines for examining a malicious file specimen [8]

Fig. 2 Secfence malware analysis methodology [12]

demonstrated in Fig. 2. Although the steps are vague it gives
a detailed overview of the steps that should be taken in a
successful analysis. Some of the stages in this methodology
again are not suitable for the project, for example, nomemory
analysis was performed during this project. The reason that
memory analysis was not be focused on during the analysis
stage of this project is that the malware analysis environment
Zero Wine that was used to analyze malware within a Linux
environment has limited features to capture and analyze the
memory of a process.

123



Security implications of running windows software on a Linux system using Wine: a malware…

Static Analysis of the sample Cuckoo Sandbox features inte-
grated static malware analysis functions; these functions
were used in order to perform a static analysis of the mal-
ware samples that were being analyzed. Statically analyzing
each sample individually was an essential part of the study,
the information that was collected during the static analysis
was later used to assess relationships between the success
of a malware sample running in Wine and it’s file size, file
type and compile time. The main static analysis tool used
in the project was Cuckoo Sandbox, this software automati-
cally does a static analysis and outputs the results in the final
report, along with the behavioral analysis results. As this was
the software of choice for the behavioral analysis it was a log-
ical choice to also use it for the static analysis. Static analysis
was used to extract file details including:

– File name
This was extracted from the sample via static analysis
to determine what the original file name of the malware
sample was.

– File size
The file size was extracted using the static analysis fea-
tures of Cuckoo Sandbox.

– File type
The file type was also extracted using Cuckoo Sandbox’s
static analysis features.

– MD5 Hash
TheMD5hashwas collected to determine the uniqueness
of each sample in the study. It was important that different
samples were used throughout and no sample was used
twice. The MD5 hash ensured that no two files that were
identical were used more than once in the analysis stage
of the project.

– Compile Time
The compile time of the sample was collected using
Cuckoo Sandbox’s static analysis features. The compile
time was not always accurate as some dates were very
clearly wrong, indicating that the metadata of the file had
been tampered with. The compile time was collected to
determine if the age of the malware had any effect on its
ability to run successfully in Wine.

Behavioral analysis of the sample The behavioral analysis
involved five categories of analysis for each sample

– File system: The file-basedAPI calls, alongwith any files
that are dropped by the sample.

– Registry: Registry based API calls.
– Processes: The processes that were spawned and docu-
menting any crashes.

– Network: The network traffic.
– Services: Any services started by the malware.

The comparison of each sample was done by running
a Python script to process the results from the Windows
environment, this script extracted all of the API calls of
interest from the Cuckoo Sandbox report. This included API
calls related to file system changes, registry changes, pro-
cess starting, services starting and network related API calls.
The signatures section of Cuckoo Sandbox would also be
observed as this is an implemented function of Cuckoo Sand-
box that extracts key malicious API calls during the analysis.
The API calls were then compared to the API calls that were
recorded by Zero Wine Tryouts in the Linux environment.
For each significant API call a search was conducted for
similar API calls in the Zero Wine report, which was used to
determine if the malware had similar behavior in Wine when
compared to the Windows environment and hence determin-
ing how successful the malware was at running in Wine. If
a call was made multiple times in Windows the number of
times it appeared in the Cuckoo Sandbox was recorded, this
could then be compared to the ZeroWine report to ensure that
the call appeared a comparable number of times in the Linux
environment. The PCAP files that were generated by Zero
Wine Tryouts and Cuckoo Sandbox were also compared by
hand to determine if similar packets were observed in both
environments.

5 Results

5.1 Analysis results

This section reports on the results from each of the malware
samples that were analyzed.

5.1.1 Narilam sample analysis

Narliam is an information stealing Trojan that is usually
distributed in spam emails and malicious websites; after
infecting a system it attempts to gather information about
a system, such as the operating system, running processes,
IP address and a list of running processes; file details can be
viewed in Table 1. The results of the analysis, which are sum-
marized in Table 2, provided strong evidence to suggest that
the malware had been successful at compromising the Linux
computer runningWine. The file and registry based API calls
were very similar in both environments. The malware was
copied toC:\WINDOWS\system32\lssas.exe, compromising
the lssase.exe service in both Linux and Windows. The mal-
ware was also able to install itself via Wine, making registry
based system changes to ensure it would automatically run
when the computer was started. The malware started all the
processes that were present in theWindows process tree. The
findings suggest that the malware has been successful as the
behavior in Windows and Linux were alike.

123



R. Duncan, Z. C. Schreuders

Table 1 Narilam sample details

Malware family Narilam

Malware type Worm

File name data.exe

Size (bytes) 1639284

File type PE32 (GUI) Intel 80386

Compile date 03/09/2009

Table 2 Narilam sample
success details Files success True

Registry success True

Process success True

Network success N/A

Services success N/A

Overall success True

Table 3 Hikit sample details

Malware family Hikit

Malware type Rootkit

File name oci.dll

Size (bytes) 262656

File type PE32 (DLL) (console) Intel 80386

Compile date 20/06/2011

5.1.2 Hikit sample analysis

Hikit is designed to create a backdoor into the infected
machine, this backdoor enables an attacker to steal infor-
mation from the victim computer. The attacker can also send
commands and additional malware to the infected machine
using the backdoor created by the Hikit rootkit. Further
details of the Hikit sample can be viewed in Table 3. None
of the files that appeared to be dropped by the malware in
the Windows environment were also dropped in the Linux
environment, this suggests that the malware had not been
successful at compromising the Linux system. None of the
relevant registry API calls that were made in Windows were
successful inWine, this indicates that the malware had failed
to make key registry changes when running in Linux. In
the Linux environment, the main process failed to initial-
ize which is likely the reason no file system or registry based
API calls of interest were found in the Wine activity. The
DNS requests made by the malware when it was running in a
Windows environment did not happenwhen themalwarewas
run in Linux using Wine. Neither of the two services opened
in Windows appeared to be opened in the Linux environ-
ment. Overall it was clear that the malware had very little,
if any, success at running in the Linux environment and had
not compromised the Linux system, Table 4 confirms this

Table 4 Hikit sample success
details Files success False

Registry success False

Process success False

Network success False

Services success False

Overall success False

Table 5 Stabuniq sample details

Malware family Stabuniq

Malware type Trojan

File name Stabuniq_F31B797831B36A48(...)

Size (bytes) 79360

File type PE32 (GUI) Intel 80386

Compile date 21/03/2012

Table 6 Stabuniq sample
success details Files success N/A

Registry success N/A

Process success False

Network success False

Services success False

Overall success False

as the malware was unsuccessful at recreating the behavior
observed in the Windows environment in all areas.

5.1.3 Stabuniq sample analysis

Stabuniq is a Trojan designed to steal information. The mal-
ware is normally distributed in spam emails and malicious
websites. Details of the sample can be viewed in Table 5.
After infecting a system, it attempts to gather information
about a system, such as the operating system, running pro-
cesses, IP address and a list of running processes and then
sends this information back to a remote server. The evidence
collected during analysis suggests that the malware failed
to compromise the Linux system running Wine. In Linux,
the second process failed to initialize and the main pro-
cess crashed during execution. The sample was packed using
Armadillo, this is a probable cause of the samples failure to
run as it was found that Zero Wine fails to execute Windows
PE programs packed in Armadillo. Table 6 documents that
the malware failed to recreate the behavior detected in the
Windows environment in all applicable areas.

5.1.4 Drixed sample analysis

TheDrixedmalware family samples are known to steal bank-
ing credentials, leak sensitive data, and provide remote access

123



Security implications of running windows software on a Linux system using Wine: a malware…

Table 7 Drixed sample details

Malware family Drixed

Malware type Trojan

File name 43s5d6f7g.exe

Size (bytes) 196608

File type PE32 (console) Intel 80386

Compile date 14/12/2015

Table 8 Drixed sample success
details Files success False

Registry success False

Process success False

Network success False

Services success False

Overall success False

to attackers, and are typically spread via maliciousMicrosoft
Office macros attached to spam email. Static analysis deter-
mined that original filename of the malware exe file was
Winchat.exe. Winchat.exe is a Windows system program,
which is typically found in C:\Windows\System32. As in
this case, when found in another location it is possible that
the file is malicious. Analysis results for the Drixed sample
can be viewed in Table 7. The analysis suggests that the mal-
ware was unsuccessful in compromising a computer running
Linux and the Windows compatibility software Wine, the
overall results can be viewed in Table 8. The malware did not
extract information from internet browsers when running in
theLinux environment. Thefile thatwas dropped inWindows
was not dropped in the Linux environment. The malware did
not fingerprint the machine when running in Linux and did
not configure itself to auto-run on start-up. The malware did
start the main processes but this crashed during analysis. In
the Linux environment, themalware did notmake any similar
network related API calls to the one made in Windows. The
network traffic to host 199.7.136.84’ was not detected when
the malware was run in Linux, suggesting the malware’s call
home function failed in this environment. The service opened
inWindows was not opened in the Linux environment. Over-
all it is clear that the malware failed to compromise the Linux
system.

5.1.5 Batch wiper sample analysis

Batch Wiper is a Trojan horse that is used by attackers to
delete all files in a partition and it also removes the direc-
tory of the user profile. When the malware runs successfully
on a system, it creates the files sleep.exe, juboot.exe and
jucheck.exe. The file details of the sample can be observed
in Table 9. Multple files that were dropped in the Windows

Table 9 Batch wiper sample details

Malware family Batch Wiper

Malware type Trojan

File name GroveMonitor.exe_

Size (bytes) 185928

File type PE32 (GUI) Intel 80386

Compile date 04/01/2011

Table 10 Batch wiper sample
success details Files success False

Registry success True

Process success False

Network success N/A

Services success N/A

Overall success Partially

environment were not dropped by the malware in the Linux
environment. The malware called eight functions to delete
files in theWindows but only called three in the Linux. Simi-
lar registry based API calls were made in both environments,
the most significant call being found in both environments in
the location Software\Microsoft\Windows\CurrentVersion-
\Run, this registry locationwas changed to allow themalware
to run when the infected computer started up. When run-
ning in Zero Wine some key processes failed to start and the
Sleep.exe’ process crashed. Overall it was clear that the mal-
warewas not successful at compromising theLinux computer
system. Registry changes appeared the same in the Linux
environment suggesting themalwarewas partially successful
at running on the Linux system. It was successful at installing
itself to run at start-up. An overview of the samples success
at running in Linux can be viewed in Table 10.

5.1.6 Dialer sample analysis

Dialer malware is a type of spyware that after infecting a
system attempts to dial telephone lines, this can often lead to
very expensive telephone bills.When themalware was run in
the Linux system key files were not dropped; sample details
of the malware can be viewed in Table 11. When the mal-
ware was run on Windows it dropped the file rasphone.pbk
was dropped by the malware, the difference list that was gen-
erated by ZeroWine confirmed that this file was not dropped
in the Linux environment. The malware also failed to make
significant changes to the registry in Linux such as the RAS
AutoDial which is located at Software\Microsoft\RASAuto-
Dial. The malware successfully started all of the processes in
the Linux environment; however, it was unable to start any of
the services that were started in the Windows environment.

123



R. Duncan, Z. C. Schreuders

Table 11 Dialer sample details

Malware family Dialer

Malware type Spyware

File name 91f805aece0434de667ac79a0fd4(...)

Size (bytes) 14720

File type PE32 (GUI) Intel 80386

Compile date 08/06/2005

Table 12 Dialer sample success
details Files success False

Registry success False

Process success True

Network success N/A

Services success N/A

Overall success False

Table 13 MyDoom sample details

Malware family MyDoom

Malware type Worm

File name weaver.email.FileDownloadLocation

Size (bytes) 34612

File type PE32 (GUI) Intel 80386

Compile date 01/01/1970

The malware clearly was not successful when run in Linux,
Table 12 documents the areas the malware was successful in.

5.1.7 MyDoom sample analysis

MyDoom is a piece of malware that generally spreads over
email or peer to peer networks. The worm is used to create a
backdoor known as Zincite, which listens on TCP port 1034.
After infecting a computer, thewormcan spread further using
mailing lists found on the computer that it has compromised.
Details about the sample can be observed in Table 13. Only
three of the eight files that were dropped in Windows were
dropped on the Linux system and the lsass.exe file had a dif-
ferent hash when dropped the Linux environment, revealing
that it was not an identical file to the one dropped in Win-
dows. The malware did not recreate the vital registry based
API calls that were called in the Windows environment. The
malware was unsuccessful at making changes to the registry
to ensure that it ran on start-up. The malware also failed to
make changes to the registry to edit the Internet settings. The
same processes started in Windows and Linux. The network
trafficwas not similar in the Linux environment with noDNS
requests being detected. None of the services started in Win-
dows were also started in Linux. It is clear that overall the
malware was not successful at compromising the Linux sys-

Table 14 MyDoom sample
success details Files success False

Registry success False

Process success True

Network success False

Services success False

Overall success False

Table 15 Minamps sample details

Malware family Minamps

Malware type Trojan

File name Minaps_C99FA835350AA9(...)

Size (bytes) 647599

File type PE32 (GUI) Intel 80386

Compile date 16/08/2009

Table 16 Minamps sample
success details Files success True

Registry success False

Process success True

Network success True

Services success False

Overall success Partially

tem. An overview of the results for the MyDoom malware
sample can be viewed in Table 14.

5.1.8 Minamps sample analysis

Minamps is a backdoor remote access Trojan. The malware
is generally dropped by other pieces of malware when they
infect a machine; however, Minamps is also able to com-
promise machines if the user was to accidentally download
it from a malicious website. Details about the sample used
in this analysis can be viewed in Table 15. All of the files
that were dropped in the Windows environment were also
dropped in the Linux environment. There were some differ-
ences in the recorded behavior in that key registry locations
have not been edited, which suggests that the malware was
not completely successful in compromising the Linux sys-
tem. Similar processes were initialized in both Linux and
Windows. The network-based API calls were similar in both
Windows and Linux. However, the service RASMAN did
not start in the Linux environment. It is clear that this sample
of malware was partially successful at running in the Linux
environment. The file-based changes were very similar, all
of the relevant processes have been initialized and similar
network traffic was detected to the network traffic identified
in the Windows environment test. Table 16 documents the
overall results of this malware sample.

123



Security implications of running windows software on a Linux system using Wine: a malware…

Table 17 PlugX, Korplug sample details

Malware family PlugX, Korplug

Malware type Remote Access Trojan

File name Plugx_00fdb6ad7345c091(...)

Size (bytes) 241622

File type PE32 (GUI) Intel 80386

Compile date 15/02/2010

Table 18 PlugX, Korplug
sample success details Files success False

Registry success False

Process success True

Network success False

Services success N/A

Overall success False

5.1.9 PlugX, Korplug sample analysis

PlugX or Korplug is a form of Trojan that enables remote
access to an infected machine. The malware is typically used
for the purpose of information theft. Table 17 displays infor-
mation related to the PlugX, Korplug malware sample. The
file system based API calls showed the relevant files were
created on the system in both Linux and Windows. These
files were not present in the Zero Wine difference list, which
means they were not present on the Linux system, which
suggests the malware had not been successful. A mutex was
created in both Linux and Windows (with differing names).
The registry-basedAPI callswere different in Linux: themal-
ware failed to install itself to run at start-up, and it did not
collect information from the computer such as the computer
name.Although no running processes appeared to have failed
to remain running, the fact that the network traffic differed in
Linux suggests that the malware has not worked as expected.
Table 18 provides overall details of the malware success at
running in Linux.

5.1.10 Wykcores sample analysis

Wyckores is a TrojanDropper. It is known to use the software
backdoor known as Backdoor Murcy. All of the file-based
API calls were similar between Windows and Linux and all
the files dropped in Windows were dropped in Linux. The
sample details can be viewed in Table 19. The main registry
locations were changed in both Windows and Linux sug-
gesting that the malware was able to start Backdoor Mercy
in Linux. The processes that were started were the same in
both Windows and Linux environments. The network traf-
fic was also comparable, further supporting that the malware
was successful in the Linux environment. Wykcores dropped

Table 19 Wykcores sample details

Malware family Wykcores

Malware type Trojan Dropper

File name Wykcores_0D38D6C2B9EB81(...)

Size (bytes) 73484

File type PE32 (GUI) Intel 80386

Compile date 19/06/1992

Table 20 Wykcores sample
success details Files success True

Registry success True

Process success True

Network success True

Services success True

Overall success True

Table 21 Didrex sample details

Malware family Didrex

Malware type Trojan

File name 34frgegrg.exe

Size (bytes) 314880

File type PE32 (GUI) Intel 80386

Compile date 03/02/2016

a malicious file on the system that appeared to provide back-
door access to the infected systems. The CyService service
was also started in both environments. Overall the malware
has been successful at running in the Linux environment, this
is confirmed by the overall results in Table 20.

5.1.11 Didrex sample analysis

Dridex is a derivative of the Cridex banking malware fam-
ily, which typically spreads via malicious Microsoft Office
macros sent via spamemail.Once compromised it joins a bot-
net and modifies the victims web browser to steal banking
credentials. Details of this sample are displayed in Table 21.
The recorded activity of the malware being run in Linux was
very different to when it was run in Windows. None of the
file based or registry based API calls of interest that occured
in the Cuckoo Sandbox environment was in the Zero Wine
activity. This means that it has not achieved its function of
fingerprinting the system and had not made changes to the
system to ensure that it would run on start-up. The fact that
the main process appears to have failed to initialize suggests
further that the malware has failed to compromise the tar-
get machine. The network activity, in Windows recorded as
attempting to communicate with 91.239.232.145, was also
not present in the PCAP file generated in the Linux environ-

123



R. Duncan, Z. C. Schreuders

Table 22 Didrex sample
success details Files success False

Registry success False

Process success False

Network success False

Services success False

Overall success False

Table 23 Dozmot sample details

Malware family Dozmot

Malware type Trojan Dropper

File name Dozmot.D2190db2c50c6ceb(...)

Size (bytes) 30208

File type PE32 (DLL) (console) Intel 80386

Compile date 04/05/2011

Table 24 Dozmot sample
success details Files success False

Registry success N/A

Process success False

Network success N/A

Services success N/A

Overall success False

ment. Neither the Tapisrv’ nor Rasman’ service was opened
in the Linux environment. Table 22 concludes that the mal-
ware was unsuccessful in all areas, meaning it has failed to
run successfully.

5.1.12 Dozmot sample analysis

Dozmot.D is a malicious program used for the purpose of
stealing passwords for online games accounts, file details of
the sample can be observed in Table 23. The malware did
not call many API functions in the Windows environment,
and when it was run in Linux even fewer API calls were
present in the Zero Wine activity. In Windows the malware
only called one successful API function that referred to the
file system this was the NtOpenFile function that was called
to the location C:\DOCUME-1\LOCALS-1\Temp\Dozmo.. .
The main process crashed when this malware was run in the
Linux environment with the error message ‘Unable to find
the entry point L”DllMain’. The malware was unsuccessful
in all areas, failing to run, this is confirmed in Table 24.

5.1.13 Potao sample analysis

Potao is a remote access Trojan, which is designed and uti-
lized for data theft. The form of malware is most common
in Ukraine, Russia, Georgia and Belarus, it is generally used

Table 25 Potao sample details

Malware family Potao

Malware type Backdoor Trojan

File name Potao_1stVersion_0C7183D761(...)

Size (bytes) 59904

File type PE32 (GUI) Intel 80386

Compile date 01/10/2006

Table 26 Potao sample success
details Files success False

Registry success N/A

Process success True

Network success N/A

Services success N/A

Overall success False

Table 27 Gamarue sample details

Malware family Gamarue

Malware type Worm

File name Gamarue.F.exe

Size (bytes) 32768

File type PE32 (GUI) Intel 80386

Compile date 30/04/2005

for targeted espionage. Attackers typically use social engi-
neering, or exe wrappers, in order to execute a successful
attack with the malware. The sample of Potao’s file details
can be viewed in Table 25. The recorded activity indicated
that the malware was not successful at compromising the
Linux system. The malware did not drop any files in the
Linux environment, in contrast to the two dropped files in
the Windows environment. In the Linux environment the file
pikbw.b file was not loaded using the LdrLoadDll function.
The LdrGetProcedureAddress was called on both systems
with some similar calls, this function was called eighty times
more on the Windows system. It was clear that the malware
was unsuccessful at running in Linux, this is confirmed in
the overall results, presented in Table 26.

5.1.14 Gamarue sample analysis

Gamarue is a worm that acts as a remote access Trojan and
steals information. It propagates via removable drives and is
also known to spread via other malware and spam emails.
Table 27 documents file details of the sample. The file sys-
tem based API calls that were found in the Cuckoo Sandbox
report were not present in the Zero Wine activity logs. The
only API call that referred to the file system of the Win-
dows machine was the NtOpenFile function being called

123



Security implications of running windows software on a Linux system using Wine: a malware…

Table 28 Gamarue sample
success details Files success False

Registry success True

Process success False

Network success False

Services success N/A

Overall success Partially

Table 29 TDL/Alureon sample details

Malware family TDL/Alureon

Malware type Rootkit

File name DNSChanger_0d7b87223d6fd2(...)

Size (bytes) 186368

File type PE32 (GUI) Intel 80386

Compile date 09/03/2005

to the registry location ‘C: \WINDOWS\system32 \wuau-
clt.exe’ . Registry based API calls were comparable with
the RegOpenKey function being called to the subkey ‘Drive’
in the HKEY_CLASSES_ROOT hive in both Windows and
Linux. An internal process that was created in Windows did
not appear to be created in the Linux environment. The net-
work traffic that was detected in Windows revealed multiple
DNS and ICMP requests. No similar packets were detected
when the malware was run in the Linux environment. Over-
all the malware sample was partially successful at running
in the Linux environment as similarities were found in the
registry based API calls. The overall results are presented in
Table 28.

5.1.15 TDL/Alureon sample analysis

TDL/Alureon is a backdoor rootkit that monitors network
traffic to steal information, such as credentials. This sample
is known to change DNS settings on the system after infec-
tion. Sample details are displayed in Table 29. No files were
dropped by the malware in either Windows or Linux. The
Cuckoo Sandbox report outlined that the NtCreateFile was
called to the file 000069b9.tmp, themalware was then copied
into this file, similar calls were not found in the Zero Wine
report. No registry based API calls weremade inWindows or
Linux. Themain process that was spawned in the Linux envi-
ronment crashed with an UnhandledExceptionFilter, and the
malwarewas not successful at compromising the system. The
network traffic that was detected when the malware was run
in the Windows environment was substantially different to
the network traffic that was discovered in the Linux environ-
ment. When the malware was run in the Linux environment,
no NBNS packets were detected, further suggesting that the
malware failed in the Linux environment. The overall results

Table 30 TDL/Alureon sample
success details Files success False

Registry success N/A

Process success False

Network success False

Services success N/A

Overall success False

Table 31 SC-KeyLog sample details

Malware family SC-KeyLog

Malware type Trojan Dropper

File name SCKeyLog.O_bf53d17ace80(...)

Size (bytes) 29460

File type PE32 (GUI) Intel 80386

Compile date 15/09/2004

Table 32 SC-KeyLog sample
success details Files success True

Registry success True

Process success True

Network success True

Services success N/A

Overall success True

presented in Table 30 show that the sample was unsuccessful
in all areas, resulting in it failing to run successfully in the
Linux environment.

5.1.16 SC-KeyLog sample analysis

SC-Keylog is a Trojan used by attackers to log the keystrokes
on an infected machine; sensitive information such as pass-
words can be stolen using this method [4]. Details about the
sample used in this analysis can be viewed in Table 31. The
main file system based API calls of interest were recreated
in the Linux environment. The files that were dropped on
the Windows system were also dropped on the Zero Wine
virtual machine: the hashes of these two dropped files were
the same on both systems. In Linux an additional file was
dropped by the malware, with the filename Cf Hack.dll’.
Similar registry based API calls were found in both the
Cuckoo Sandbox and ZeroWine environments. The relevant
sub process was initialized in bothWindows and Linux with-
out failure. Although fewer DNS requests were found in the
Linux environment when compared to theWindows environ-
ment, requests were sent to all the same domains. Table 32
displays the overall results of this sample. It is clear that the
sample has been successful at running in all areas and was
successful at running in the Linux environment.

123



R. Duncan, Z. C. Schreuders

Table 33 Wirenet sample details

Malware family Wirenet

Malware type Password Stealing Trojan

File name Host.exe

Size (bytes) 61952

File type PE32 (GUI) Intel 80386 (stripped)

Compile date 07/08/2012

Table 34 Wirenet sample
success details Files success True

Registry success N/A

Process success True

Network success True

Services success N/A

Overall success True

Table 35 Dyzap sample details

Malware family Dyzap

Malware type Spyware Trojan

File name Document-772976_829712.scr

Size (bytes) 246784

File type PE32 (GUI) Intel 80386

Compile date 22/05/1983

5.1.17 Wirenet sample analysis

Wirenet is a common form of malware that is used to steal
passwords; variations of the malware also exist that target
OSX and Linux machines. Table 33 documents some of the
samples details. No findings of interest were discovered in
the file system based API calls. A mutex was successfully
created in both environments. All of the relevant processes
were started in Linux. The network-basedAPI calls that were
present in Cuckoo were also executed in the Linux envi-
ronment, these appeared to be failed attempts to connect to
network sockets. No network traffic was detected in either
environment. Table 34 reveals the overall results of the sam-
ple. These findings suggest that the malware was successful
at running in Linux when compared to a Windows system.

5.1.18 Dyzap sample analysis

Dyzap is a form of spyware Trojan that is used for informa-
tion theft, the malware is commonly used to steal banking
details. The malware is most common in China with over
half of known infections occurring there. Table 35 reveals
some details about the sample used in this analysis. The mal-
ware did have some success at recreating some of the file
system based API calls of interest; however, not all API calls

Table 36 Dyzap sample success
details Files success False

Registry success False

Process success True

Network success N/A

Services success N/A

Overall success False

Table 37 CoreBot sample details

Malware family CoreBot

Malware type Banking Trojan

File name 781c6.exe

Size (bytes) 497152

File type PE32 (GUI) Intel 80386

Compile date 08/12/2015

of interest were executed in the Linux environment. The file
userdata.dat’ was dropped in the Linux environment with a
different file name, the file Document-772976-829712.src’
that was dropped in the Windows environment was not
dropped in the Linux environment. None of the registry-
based API calls were present in the Zero Wine logs. The
fact that these registry-based API calls were not present
in the Linux system report indicates that the malware was
not successful in installing itself to run at start-up as in
Linux no changes were made to the registry location Soft-
ware\Microsoft\Windows\CurrentVersion\Run. In Linux the
malware also failed to fingerprint the target as no RegQuery-
Value functions were found in registry locations such as
the MachineGuid. All of the relevant processes were initial-
ized in the Linux environment. Table 36 displays the overall
results of the sample, it is clear that the sample has not been
successful at running in the Linux environment.

5.1.19 CoreBot sample analysis

The malware sample is a Trojan and is used by attackers
in order to steal private information. Table 37 displays the
details of the sample used in this study. None of the file-based
API calls of interest took place within Wine. The expected
mutexes were not created in the Linux environment. None
of the files that were dropped in the Windows environment
were droped in the ZeroWine environment. This further sug-
gests that the malware was unsuccessful. The malware did
not appear to fingerprint the Linux machine as it did when
running in the Windows environment. This suggests that the
registry based API calls were not successfully recreated in
Linux as the value of the MachineGuid was not queried by
themalware. None of the appropriate internal processes were
started by the malware in the Linux environment. The net-

123



Security implications of running windows software on a Linux system using Wine: a malware…

Table 38 CoreBot sample
success details Files success False

Registry success False

Process success False

Network success False

Services success N/A

Overall success False

Table 39 Kawpfuni sample details

Malware family Kawpfuni

Malware type Backdoor Trojan

File name 1f0469a08681198ff9288b(...)

Size (bytes) 585728

File type PE32 (GUI) Intel 80386

Compile date 13/06/2009

work traffic that was detected in the Linux environment also
differed greatly to the Windows network traffic, in Windows
multipleDNS andNBNS requests were detected. Thesewere
not detectedwhen themalwarewas running in theLinux envi-
ronment. The overall results shown in Table 38 show that the
sample has been unsuccessful in all areas and unsuccessful
overall.

5.1.20 Kawpfuni sample analysis

Kawpfuni is a backdoor Trojan that is known to be used for
military espionage. Details about the sample are documented
in Table 39. The file system based API calls of signifi-
cancewere similar in both Linux andWindows. Although the
dropped files did not appear in the Zero Wine difference list
these were deleted from the system and is likely the reason
they were not present in the difference list. The registry-
based API calls of interest did not appear to be executed
in the Linux environment. When the malware was run in
the Window environment it appeared to make many changes
in the Internet Settings key. The RegCreateKeyExA func-
tion was called in the locations Software\Microsoft\Internet
Settings\5.0\Cache\History and Software\Microsoft\Internet
Settings\5.0\Cache\Cookies. These are signs of the malware
stealing sensitive information from the registry. No simi-
lar calls were found in the Zero Wine activity. All of the
expected processes were started successfully in the Linux
environment. It is clear that the malware has been partially
successful at running in the Linux environment as the file
based changes were the same in Windows and Linux, the
overall results shown in Table 40 support that the sample has
been partially successful.

Table 40 Kawpfuni sample
success details Files success True

Registry success False

Process success True

Network success N/A

Services success N/A

Overall success Partially

Table 41 Skypii sample details

Malware family Skypii

Malware type Worm

File name 6B8E96CC7ADAF886C7(...)

Size (bytes) 103424

File type PE32 (GUI) Intel 80386

Compile date 06/06/2004

Table 42 Skypii sample success
details Files success False

Registry success N/A

Process success False

Network success N/A

Services success N/A

Overall success False

5.1.21 Skypii sample analysis

Skypii is a worm, the sample was downloaded from ker-
nelmode.info. Table 41 displays details about the chosen
sample. This malware spreads using the instant messag-
ing service on the programs Windows Live Messenger
and Skype [5]. A mutex called ‘DBWinMutex’ was cre-
ated in the Windows environment but was not created in
the Linux environment. No changes were made to the
registry in either Linux or Windows. When the malware
was run in Windows the malware used the CreateProcess-
InternalW function, this API call was used to start the
process 6B8E96CC7ADAF886C7...exe. No similar process
was started in Linux, this suggests that the malware failed in
the Linux environment as it failed to initialise key processes.
The malware then proceeded to inject code into this pro-
cess. The malware used theWriteProcessMemory to achieve
this, no similar API calls were found within the Zero Wine
report. This further supports the argument that the malware
was unable to compromise the Linux system running Wine.
Neither Cuckoo Sandbox or Zero Wine detected any net-
work traffic. Overall these results suggest that the malware
failed to compromise the Linux system. The overall results
are displayed in Table 42.

123



R. Duncan, Z. C. Schreuders

Table 43 4DW4R3 sample details

Malware family 4DW4R3

Malware type Rootkit

File name Rootkit_4rw3r3_load.ex_

Size (bytes) 52224

File type PE32 (GUI) Intel 80386

Compile date 27/01/2010

Table 44 4DW4R3 sample
success details Files success True

Registry success N/A

Process success True

Network success False

Services success N/A

Overall success Partially

5.1.22 4DW4R3 sample analysis

Details about the selected sample canbeobserved inTable 43.
On analysis, the malware installed a print processor, that acts
as a backdoor to the system for attackers. All of the signifi-
cant file-based API calls that were called in Windows were
also called in the Linux environment. The difference list cre-
ated by Zero Wine did not contain the file ‘17.tmp’ that was
dropped by the malware in the Windows environment, this
was caused by the fact that the malware deleted this file dur-
ing the infection.All relevant processeswere initialized in the
Linux environment. However, the malware was not entirely
successful as it did not generate any network traffic in the
Linux environment. The network traffic from the Windows
virtual machine revealed that the malware attempted a DNS
request to triplexfund.com. No similar packets were captured
in the PCAP file generated by Zero Wine, this suggests that
the malware was not completely successful as the call home
function failed. Table 44 highlights that the sample did have
a moderately high degree of success when running in the
Linux environment and it was partially successful.

5.1.23 Loki Bot sample analysis

Upon infection, Loki Bot gathers and extracts passwords
and crypto-currency wallets from a wide range of software.
Details of the Loki Bot sample selected can be viewed in
Table 45. The file system based API calls of interest that
were found in the Cuckoo Sandbox reports were not present
in the ZeroWine output. The files ‘5511af46f5325f67...’ and
‘autoexec.bat’ that were created in the Windows environ-
ment also were not created in the Linux environment. The
key registry related calls that were executed in the Windows
environment were not executed in the Linux environment

Table 45 Loki Bot sample details

Malware family Loki Bot

Malware type Spyware

File name 4213294.root_1_0.scr.ViR

Size (bytes) 156672

File type PE32 (GUI) Intel 80386

Compile date 07/06/2014

Table 46 LokiBot sample
success details Files success False

Registry success False

Process success False

Network success N/A

Services success N/A

Overall success False

and there was no evidence of the malware installing itself to
auto-run at start-up of the system in the Linux environment.
The Cuckoo Sandbox report detailed tha the malware made
changes to registry location Software\Microsoft\Windows
NT\CurentVersion\Winlogon to ensure it would run when
Windows started. No similar calls were found in the Zero
Wine report. Key processes crashed in the Linux environ-
ment suggesting that the malicious sample had failed to run
successfully. The malware used the CreateProcessInternalW
function inWindows to create the process svchost.exe.When
themalwarewas run inWine it was apparent that themalware
attempted to initialise this process, however the ExitPro-
cess fuction was called before the process could make any
changes. When running in Windows this process called one
hundred and fifty two functions that attempted to unhook
Windows functions. Table 46 highlights that themalwarewas
unsuccessful in all areas when running in Linux, resulting in
the malware being unsuccessful overall.

5.1.24 Nitol sample analysis

Nitol is a Trojan used by attackers to form a botnet of zom-
bie computer systems, typically used for denial of service
attacks. The details of the sample of Nitol used in this study
including the file name, file type and file size can be viewed in
Table 47 The only file-based API call that was present in the
Cuckoo Sandbox report was also present in the Zero Wine,
this was the malware being copied to the file path location
C:\Windows\system32\’. The registry-based API calls that
made changes to the Nationalkyd’ service were also present
in both Linux and Windows. All of the relevant processes
were started in each environment. The network traffic was
similar in both environments; however, more TCP requests
were made in Windows and DNS requests were only found

123



Security implications of running windows software on a Linux system using Wine: a malware…

Table 47 Nitol sample details

Malware family Nitol

Malware type Trojan

File name Yy999.exe

Size (bytes) 24576

File type PE32 (GUI) Intel 80386

Compile date 08/09/2013

Table 48 Nitol sample success
details Files success True

Registry success True

Process success True

Network success True

Services success True

Overall success True

Table 49 Nivdort sample details

Malware family Nivdort

Malware type Trojan

File name sample.exe

Size (bytes) 892416

File type PE32 (GUI) Intel 80386

Compile date 10/07/2013

in the Linux environment. The Nationalkyd’ service was
started in both Windows and Linux. The information shown
in Table 48 concludes that overall the malware has been suc-
cessful at compromising the Linux system.

5.1.25 Nivdort sample analysis

Nivdort is a particular malware family known to install to
the Windows folder, which is done to evade detection from
anti-malware software. Information extracted about the sam-
ple used in this study can be viewed in Table 49. Via Wine
the malware was unable to extract private information from
Internet browsers as it did on the Windows system. Key file-
based API calls that were present in the Cuckoo Sandbox
did not have similar calls in the ZeroWine environment. Key
files were not created on the Linux system, such as the tst
file. None of the registry based changes of interest were exe-
cuted by themalware in the Linux environment. Themachine
was not fingerprinted, the malware did not install itself to
run on start-up, and no changes were made to the Internet
settings in Linux. The malware did not spawn all of the rel-
evant processes in the Linux environment and a key process
crashed. DNS requests to multiple domains were detected
when the malware was run in Windows, no network activ-
ity was detected in Linux. The Shell Diagnostic Brightness

Table 50 Nivdort sample
success details Files success False

Registry success False

Process success False

Network success False

Services success False

Overall success False

Table 51 Unknown1 sample details

Malware family Unknown1

Malware type Trojan Dropper

File name newversion.exe

Size (bytes) 5766144

File type PE32 (GUI) Intel 80386 (stripped)

Compile date 01/11/1971

Receiver was started in the Windows environment but no
record of the malware attempting to initialize this service
could be found in the Linux activity. Themalware also started
the Rasman service in Windows, but this service was not
started in Linux. As illustrated in Table 50, this sample of
malware apparently failed in the Linux environment.

5.1.26 Unknown sample 1 analysis

As this sample was downloaded from VX vault, it’s family is
unknown. Table 51 highlights the details of themalware sam-
ple. Changes that were made to the file system to make the
sample run at start-up were not recreated in the Linux envi-
ronment. Some DLL files that were called in Windows were
not called in the Linux environment. The NtCreateFile func-
tion was called in Windows at the location C:\Documents
and Settings\Rory\Local Settings\Temp \Crd.vbe. This file
was dropped by the malware. The CreateFileW function was
also called in Zero Wine, to create the file Crd.vbe. This
finding initially suggests some success as the malware has
dropped a key file in the Linux environment. After further
investigation into the two reports it could be determined that
the NtCreateFile function was called to the file rsaenh.dll
in Windows. No similar API calls were found in the Linux
environment. The DLL file was then utilised by the mal-
ware using the LdrLoadDll in theWindows environment. No
similar calls were found loading this DLL file in the Linux
environment. The malware did not install itself for auto run
at start-up in the Linux environment by making changes at
the location C: \Documents and Settings \All Users \Start
Menu \Programs \Startup. All of the processes required were
spawned. Also, the malware did not make the same registry
calls. Although it did extract the computer name from the
registry using the GetComputerNameW function, in Win-

123



R. Duncan, Z. C. Schreuders

Table 52 Unknown1 sample
success details Files success False

Registry success False

Process success True

Network success N/A

Services success N/A

Overall success False

Table 53 Unknown2 sample details

Malware family Unknown1

Malware type Unknown

File name 647129ff9f491c81dc8298b6cb6a(...)

Size (bytes) 301125

File type PE32 (GUI) Intel 80386

Compile date 29/01/2012

dows the ‘NtQueryValueKey’ functionwas used in the object
attribute ‘ActiveComputerName’. Overall it is clear the mal-
ware was not completely successful at running within the
Linux environment. Table 52 confirms that the malware has
not been successful.

5.1.27 Unknown sample 2 analysis

Information about this particular sample can be viewed
in Table 53. The analysis determined that the files
PSAPI.DLL, uxtheme.dll and SETUPAPI.dll all failed to be
loaded in the Linux environment. The malware dropped a
file called 0_Wrapper.log when run in the Windows envi-
ronment. It was determined that this file was not dropped
in the Linux environment as it was not present in the Zero
Wine difference list. The malware did manage to start all
of the processes in Linux that were started in the Windows
environment. None of the changes to the registries made in
Windows were also made when the malware was run in Zero
Wine. Themalwaremade changes to theWindows registry in
the location Software\Microsoft\Windows\CurrentVersion\-
Explorer\ MountPoints2\788d3620-9923-11e5-85dd-
806d6172696f. No similar entries were found in the Zero
Wine report, suggesting that the malware was not successful
at compromising the Linux system. In theWindows environ-
ment the RegQueryValueExW function was used to extract
data from the computer registry. No similar API calls were
found in the ZeroWine report suggesting further that themal-
ware failed in the Linux environment. As can be observered
in Table 54 the sample was not successful when running in
the Linux environment.

Table 54 Unknown2 sample
success details Files success False

Registry success False

Process success False

Network success N/A

Services success N/A

Overall success False

Table 55 Unknown3 sample details

Malware family Unknown3

Malware type Unknown

File name firefox.exe

Size (bytes) 1138688

File type PE32 (GUI) Intel 80386

Compile date 29/01/2015

Table 56 Unknown3 sample
success details Files success False

Registry success False

Process success False

Network success False

Services success N/A

Overall success False

5.1.28 Unknown sample 3 analysis

Details of the sample of malware are presented in Table 55.
The malware was unable to create the mutex ‘DC_ -
MUTEX79VYXBE’ in Linux, this mutex was created in the
Windows environment. When the malware was run in the
Windows environment very few registry related API calls
were present in the Cuckoo Sandbox Report. The malware
mainly appeared to be querying registry values. When the
malware was run in the Linux environment no similar calls
appeared to be present in the Zero Wine activity log. Only
four processes were started in the Linux environment: three
less than the seven that were started in Windows. When
the malware was run in Linux no significant network traf-
fic was detected, in Windows multiple ICMP requests and
DNS requests were detected. The malware attempted DNS
requests to two addresses when it was run in a Windows
environment. These addresses were adipluto.dynu.com and
plutorack.linkpc.net.When themalwarewas run in the Linux
environment no similar DNS requests were found in the
PCAP file. Overall the malware is not successful in the Linux
environment. Table 56 documents an overview of the mal-
ware failing in all areas that were assessed.

123



Security implications of running windows software on a Linux system using Wine: a malware…

Table 57 Unknown4 sample details

Malware family Unknown4

Malware type Unknown

File name ozze.exe

Size (bytes) 893942

File type PE32 (GUI) Intel 80386

Compile date 29/10/2012

Table 58 Unknown4 sample
success details Files success True

Registry success False

Process success False

Network success False

Services success N/A

Overall success Partially

5.1.29 Unknown sample 4 analysis

Table 57 documents what is known about this sample.
The file-based API calls were comparable in Windows and
Linux. A malicious executable file was created in Linux and
Windows, however the naming format differed slightly. In
Windows the name was ‘ozze.exe’, in Linux it was named
‘ttWIc8.exe’. Thismalicious executable was then copied into
the location \Application Data\lpm26v\lmp26v.exe on both
the Linux system and Windows systems. The files that were
dropped in the Windows environment were also dropped on
the Linux system. When the malware was run in the Linux
environment all three of the files that were dropped in Win-
dows were also dropped by the malware. The hashes for
pid.txt and Windows.lnk appeared to be different in Linux
when compared to the hashes of the files dropped in Win-
dows.

The significant registry based calls that were executed in
Windows did not appear in theWine activity. InWindows the
malware called the RegCreateKeyExW in the registry loca-
tionSoftware\Microsoft\Windows \CurrentVersion\Explorer\
MountPoints2, possibly in attempt to infect any external
storage devices with malware in an attempt to spread the
infection. No similar API calls were found in the Zero Wine
report. When the sample was run in the Windows environ-
ment DNS requests to the domain vs.redirectme.net were
detected. When the same sample was run in Zero Wine these
DNS requests were not detected, thus suggesting that the
malware has failed to compromise the Linux computer sys-
tem. Overall it is clear that the sample has been partially
successful as the file-based API calls and created files were
comparable. The results for this analysis are summarized in
Table 58.

Table 59 Unknown5 sample details

Malware family Unknown5

Malware type Unknown

File name host9.exe

Size (bytes) 76800

File type PE32 (GUI) Intel 80386

Compile date 19/06/1992

5.1.30 Unknown sample 5 analysis

This sample’s malware family is unknown. Table 59 shows
what is known about the sample. Two files were dropped
when the malware was run in Windows ruta.txt and .Iden-
tifier, the NtCreateFile function was called in Windows to
create the file ruta.txt and .Identifier. Neither of these files
were dropped on the Linux system. InWindows the malware
also created a mutex, utilising the NTCreateMutant func-
tion to create a mutex called RdwdIEit, when the malware
was run in Zero Wine no mutex was created. The malware
did not fingerprint the system in the Linux environment. In
the Cuckoo Sandbox report API calls were found that sug-
gested the malware collects information from the system in
attempt to fingerprint it. The malware utilized the function
RegQueryValueExA to find the GUID of the machine. This
call was not replicated in the Linux environment. The mal-
ware also did not make registry related changes to ensure
it runs on start-up of the system in the Linux environment.
Seven processes were started inWindows and only two were
spawned in the Linux environment. When the malware was
run in the Linux environment it only started one other process
explorer.exe, this process was not started in Windows. When
the malware was run in Windows it attempted to connect to
the domain windows00.duckdns.org. This is potentially the
domain it would send all the stolen information to after the
malware has collected it. When the malware was run in Zero
Wine it was apparent that the malware had not attempted to
connect to any domains. In the Linux environment none of
the services that were started in Windows appeared. When
themalwarewas run in theWindows environment it appeared
to open the RASMAN service. No evidence of this service
starting in the Linux environment was present in the Zero
Wine report. As Table 60 concludes, the sample has been
unsuccessful in all areas and hence has failed to run in the
Linux environment.

5.2 Overall results

The results gathered from the malware analysis stage of the
study were used to determine the overall success rates of
Windows malware samples running in Wine. As illustrated
in Fig. 3, of the thirty malware samples analyzed, 16.7%

123



R. Duncan, Z. C. Schreuders

Table 60 Unknown5 sample
success details Files success False

Registry success False

Process success False

Network success False

Services success False

Overall success False

Fig. 3 The success rate of windows malware in wine

(n=5) successfully ran on the Linux system, 20.0% had par-
tial success (n=6) and 63.3% (n=19) failed to run in Wine.
Table 61 shows the combined analysis results from all sam-
ples. Table 62 shows the combined details of the samples.
This data set was used to test for trends between types of
malware or malware behaviors and the malware being suc-
cessful at running in Linux.

5.3 Hypotheses testing

To assess the hypothesis created, regression analysis was
used in order to determine if there were any relationships
between a malware sample’s characteristics and its ability to
run successfully in Linux. The regression analysis selected
for this data sample was ordinal logistic regression. This
method of regression analysis was the most suited to the
data as it allows the use of one dependant variable and mul-
tiple independent variables. This allowed the success of the
malware in Linux to be tested against certain malware char-
acteristics and behaviours.

The dependent variable used for this test was themalwares
success in Linux, defined as Yes, Partially or No. The ordinal
regression statistical test could be used with this dependant
variable as it allowed the use of this ordinal variable: where
the relative ordering between categories is established as
Yes>Partially>No. The aim of using this test was to deter-

mine if any specific types or behaviours of malware had a
significant effect on the malwares ability to run in Wine. The
independent variables selected to be used in this regression
analysis were:

– The malware making changes to the registry inWindows
– The malware starting processes in Windows
– The malware starting services in Windows
– The malware initializing network traffic in Windows
– The number of files dropped by the malware inWindows
– The number of processes spawned by the malware in
Windows

– The file size of the malware in bytes
– The compile date of the malware

Some independent variables that were intended to be
included in this test were excluded due to the sample size
that was collected. The independent variables that could not
be included were:

– The malware making changes to the file system in Win-
dows

– The category of malware

Ordinal regression allows the independent variables to be
factors or covariates. The data collected holds a range of con-
tinuous variables such as the file size of a malware sample
and the number of process spawned by the malware. These
independent variables would be classed as covariates. There
were also a range of categorical independent variables such
as the malware making changes to the registry and the mal-
ware initializing network traffic. The categorical independent
variables would be classed as factors in the regression anal-
ysis.

The regression analysis was used to test for strong rela-
tionships between any of these independent variables and the
success of the malware (with large effect sizes, as hypothe-
sised and per the low sample size). The model fitting results
concluded that the p-value of this test was .912, the thresh-
old for significance in this statistical analysis was a value
of .05. The value of .912 exceeds this threshold, this value
shows that the model does not give a significant improve-
ment in terms of predicting the results based on the data
that has already been collected. The p-value of .912 reveals
that the results have a probability of 91.2% chance of being
random. This suggests that the independent variables that
were included in the ordinal regression test are very unlikely
to have had any significant effect on the outcome of the
results.

In the goodness of fit model, Pearson has a p-value of
.236 and Deviance has a p-value of .439. The significance
threshold value of these two p-values was again .05. Both of
these p-values are significantly higher than the threshold in

123



Security implications of running windows software on a Linux system using Wine: a malware…

Table 61 Overall malware success details

Malware family File system Registry Processes Network Services success Overall success

Narilam True True True N/A N/A True

Hikit False False False False False False

Stabuniq N/A N/A False False False False

Drixed False False False False False False

Batch Wiper False True False N/A N/A Partially

Dialer False False True N/A N/A False

MyDoom False False True False False False

Minamps True False True True False Partially

PlugX, Korplug False False True False N/A False

Wykcores True True True True True True

Didrex False False False False False False

Dozmot False N/A False N/A N/A False

Potao False N/A True N/A N/A False

Gamarue False True False False N/A Partially

TDL/Alureon False N/A False False N/A False

SC-KeyLog True True True True N/A True

Wirenet True N/A True True N/A True

CoreBot False False False False N/A False

Kawpfuni True False True N/A N/A Partially

Skypii False N/A False N/A N/A False

4DW4R3 True N/A True False N/A Partially

LokiBot False False False N/A N/A False

Nitol True True True True True True

Nivdort False False False False False False

Unknown1 False False True N/A N/A False

Unknown2 False False False N/A N/A False

Unknown3 False False False False N/A False

Unknown4 True False False False N/A Partially

Unknown5 False False False False False False

this instance. These results suggest that the model used does
not have a good fit.

The Pseudo R-Square, Nagelkerke value is .103 this sug-
gests that 10.3% of the outcome variants in the dependent
variable are dependent on the independent variables used in
this test. This suggests that the independent variables had
very little impact on the outcome variants in the depen-
dant variable. This value of .103 indicates that the particular
malware behaviours and characteristics selected for this
regression analysis had an insignificant effect on a malware
samples’ ability to run successfully in a Linux environment.
Unfortunately this does not support the stated hypothesis.

None of the independent variables produced p-values
below the significance threshold of .05, which suggests that
from the results gathered none of the independent variables
can be used to reliably predict the dependent variable. This
indicates that there was not a statistically significant effect

on the malware running successfully in a Linux environment
by malware characteristic or behaviour.

6 Discussion

The purpose of this study was to assess the security implica-
tions of runningWindows software throughWine on a Linux
system. In order to gain insight into the practical magnitude
of the issue, samples of malware were run in a Windows and
Linux environment. The results gathered in both the Win-
dows and Linux environments were compared.

The findings can be used to help provide an answer towhat
the security implications of using the compatibility layer soft-
ware Wine are. It is clear that some malware samples were
able to run completely successfully and others were able to
run partially successful. This demonstrates that malware is

123



R. Duncan, Z. C. Schreuders

Table 62 Overall malware details

Family Malware type File name Size File type Compile date

Narilam Worm data.exe 1639284 PE32 (GUI) Intel 80386 03/09/2009

Hikit Rootkit oci.dll 262656 PE32 (DLL) (console) Intel 80386 20/06/2011

Stabuniq Trojan F31B797831B3(...) 79360 PE32 (GUI) Intel 80386 21/03/2012

Drixed Trojan 43s5d6f7g.exe 196608 PE32 (console) Intel 80386 14/12/2015

Batch Wiper Trojan GroveMonitor.exe_ 185928 PE32 (GUI) Intel 80386 04/01/2011

Dialer Spyware 91f805aece0434(...) 14720 PE32 (GUI) Intel 80386 (stripped) 08/06/2005

MyDoom Worm weaver.email.File(...) 34612 PE32 (GUI) Intel 80386 01/01/1970

Minamps Trojan Minaps_C99FA83(...) 647599 PE32 (GUI) Intel 80386 16/08/2009

PlugX, Korplug RAT Plugx_00fdb6a(...) 241622 PE32 (GUI) Intel 80386 15/02/2010

Wykcores Trojan Dropper Wykcores_0D38(...) 73484 PE32 (GUI) Intel 80386 19/06/1992

Didrex Trojan 34frgegrg.exe 314880 PE32 (GUI) Intel 80386 03/02/2016

Dozmot Trojan Dropper Dozmot.D2190d(...) 30208 PE32 (DLL) (console) Intel 80386 04/05/2011

Potao Backdoor Trojan Potao_1st(...) 59904 PE32 (GUI) Intel 80386 01/10/2006

Gamarue Worm Gamarue.F.exe 32768 PE32 (GUI) Intel 80386 30/04/2005

TDL/Alureon Rootkit DNSChanger(...) 186368 PE32 (GUI) Intel 80386 09/03/2005

SC-KeyLog Trojan Dropper SCKeyLog.O_b(...) 29460 PE32 (GUI) Intel 80386 15/09/2004

Wirenet Password Trojan Host.exe 61952 PE32 (GUI) Intel 80386 (stripped) 07/08/2012

Dyzap Spyware Trojan Document-772976(...) 246784 PE32 (GUI) Intel 80386 (stripped) 22/05/1983

CoreBot Banking Trojan 781c6.exe 497152 PE32 (GUI) Intel 80386 08/12/2015

Kawpfuni Backdoor Trojan 1f0469a0(...) 585728 PE32 (GUI) Intel 80386 13/06/2009

Skypii Worm 6B8E96CC(...) 103424 PE32 (GUI) Intel 80386 06/06/2004

4DW4R3 Rootkit Rootkit_4rw3r3(...) 52224 PE32 (GUI) Intel 80386 27/01/2010

LokiBot Spyware 4213294.root_1_0(...) 156672 PE32 (GUI) Intel 80386 07/06/2014

Nitol Trojan Yy999.exe 24576 PE32 (GUI) Intel 80386 08/09/2013

Nivdort Trojan sample.exe 892416 PE32 (GUI) Intel 80386 10/07/2013

Unknown1 Trojan Dropper newversion.exe 5766144 PE32 (GUI) Intel 80386 (stripped) 01/11/1971

Unknown2 Unknown 647129ff9f491c(...) 301125 PE32 (GUI) Intel 80386 (stripped) 29/01/2012

Unknown3 Unknown firefox.exe 1138688 PE32 (GUI) Intel 80386 29/01/2015

Unknown4 Unknown ozze.exe 893942 PE32 (GUI) Intel 80386 29/10/2012

Unknown5 Unknown host9.exe 76800 PE32 (GUI) Intel 80386 19/06/1992

able to run successfully in a Linux environment when run
using Wine. This is clearly a security issue worth consid-
ering for Linux users who are using the software Wine to
run arbitrary software. If malware is able to run via Wine, a
Linux system can be compromised by malware that would
otherwise be ineffective without Wine. The software Wine
does not appear to have anywarningmessages during or after
installation that could alert users to these security implica-
tions. A recommendation would be for Wine to include a
message to users during installation that informs users about
the importance of running verified software and using anti-
malware software.

The table of results shows that the samples analyzed in
this project indicated that generally malicious samples were
fairly likely to be unsuccessful when running in Wine. As
documented in the overall results in Table 61, two-thirds of

the malware samples tested in this study were unsuccessful
at running in Wine. This suggests that the majority of mal-
ware samples that are run in Wine will not run successfully.
Table 61 also demonstrates that six of the samples testedwere
able to run partially successfully in the Linux environment.
Thus demonstrating that some samples will run successfully
in some areas but fail in others. An example of a partially
successful sample can be viewed in Table 16, the sample
Minamps was successful in terms of the changes made to the
file system, the processes spawned and the network activity,
however, it did not successfully make changes to the reg-
istry or start the required services and so was only partially
successful.

Partially successful samples could potentially still pose
threat to a Wine user, the malware’s behavior may not be an
exact copy of the behavior documented in theWindows envi-

123



Security implications of running windows software on a Linux system using Wine: a malware…

ronment but the fact that some similar calls were found could
still be a threat to the security and integrity of a computer
system. For example, the system may not successfully start
a service but could still fingerprint the system and send these
details to amalicious server over the Internet. Table 16 shows
that Minamps had successfully recreated the same network
traffic as in Windows, which could have sent vital computer
information to a remote server, resulting in Minamps being
a serious threat to Wine users even though it was partially
successful. Table 61 shows that eighteen sampleswere unsuc-
cessful. The fact that a sample has failed also does notmean it
is entirely harmless, malicious processes could stay running
and cause damage to the computer.

The area with the lowest success rate in Linux was the
ability for malware to start the same services as were started
in theWindows environment. Referring to Table 61, it is clear
that only two of ten malware samples were able to success-
fully recreate the services that were started inWindows in the
Linux environment. This implies that malware that attempt
to start services in the Linux environment may bemore likely
to fail or only be partially successful.

An ordinal regression statistical test was conducted, the
results of this test were inconclusive as none of the inde-
pendent variables were found to have a significant effect on
the malware running successfully in Linux. Although some
aspects of analysis were automated, the sample size was dic-
tated by the manual nature of the comparison. The sample
size could be increased in further investigations to test for
relationships with smaller effect sizes.

The results of the analysis stage may suggest that the
high-level malware behavior characteristics (use of services,
registry, files etc.) that were tested for effect on malware suc-
cess inWine may have been too generic, and that the specific
details in the use of services, libraries, and APIs were most
likely the determinate factor for malware success in Wine.
For instance, the OpenServiceA and OpenServiceW func-
tionswere never successfully called in theLinux environment
in any of the analyses that took place. This suggests that mal-
ware that calls functions to certain open services such as the
Tapisrv and Rasman services are more inclined to fail at run-
ning in a Linux environment. However, more analysis would
need to be conducted in order to confirm this relationship.
This finding may be a result of Wine not being able to recre-
ate the OpenServiceA and OpenServiceW functions, another
possibility may be that the services being called are not avail-
able through Wine. This again supports the suggestion that
malware that calls services in Linux are more inclined to fail
or only be partially successful.

Although the statistical test was statistically inconclusive
the results can inform potential relationships. It is clear that
malware does have the ability to run successfully in Linux,
as five of the samples were found to run correctly in Linux,
calling very similar calls to the API calls detected in the

Windows environment. Although this is a relatively small
selection of the thirty malware samples used in this investi-
gation this provides evidence that suggests that malware is
capable of compromising a Linux computer system. Six of
the samples were able to run partially on the Linux system.
This essentially means that they were able to make similar
system calls and changes in some areas but failed to do so in
others: for example, a partially successful malicious sample
may successfully recreate all network traffic and network-
based API calls in Linux but fail make the same registry
changes that were made by the malware on a Windows sys-
tem. An example of this would be the malware successfully
making changes to the file system but failing tomake key reg-
istry changes. Nineteen malicious files completely failed to
compromise the Linux systemmatching none of the changes
to the file system, registry, network or services. This sug-
gests that many malicious Windows executables will fail to
run in Wine. Overall the findings do suggest that using Wine
is a security threat to Linux users. Although the chances of
malware infecting a Linux computer runningWine appear to
be relatively small, the risk is still present and users should
proceed with caution when running unknown files in Wine.
The security risk imposed by Wine is enhanced by the fact
that Wine is not sandboxed from users’ resources, meaning
that any software running in Wine could potentially access
all of a Linux user’s files.

Another possible relationship that may exist but could not
be statistically shown was that of malware starting network
traffic in Windows and being successful. This was the inde-
pendent variable that got the lowest p-value; a larger sample
size might detect an effect on the malware success; how-
ever this relationship could not be shown from the sample
collected in this study.

A similar study, yet much smaller in scope was conducted
by Matt Moen in 2005 and concluded similar results to the
results generated in this study [9]. The writeup is somewhat
vague but concludes that one of the five samples (20%) tested
appeared to run successfully in theLinux environment,which
is a comparable percentage. The results of the study con-
ducted in this report are likely to be more reliable as a higher
number of malicious samples were analyzed when compared
to Moen’s study.

7 Limitations

The primary limitation of the project was the number of mal-
ware samples analyzed. Amore automated analysis (perhaps
at the expense of thoroughness) could provide more data
for statistical analysis. This could uncover relationships that
were not established from the data gathered in this research.
A further limitation was that only limited interactive live
analysis of the infected environments was conducted. Live

123



R. Duncan, Z. C. Schreuders

analysis could have included gainingmore concrete evidence
of a malware sample’s success in the Linux environment by
attempting to connect to any backdoors that themalwaremay
have opened on the infected system. The analysis environ-
ment had limited network connectivity, in order to protect
the other computer systems connected to the network.

8 Conclusion

The research conducted in this study produced a series of
results that can be used to develop an understanding of the
behavior of Windows malware running in Linux via Wine.
Results indicate that Windows malware is able to run suc-
cessfully in a Linux environment throughWine. The success
rates of Windows malware running in a Linux environment
does appear to be relatively low. The fact that some sam-
ples of malware did run successfully illustrates that using the
compatibility layer software Wine in a Linux environment
does present a security risk to Linux systems, which would
otherwise be secure against Windows malware. No relation-
ships could be established between any types of malware or
behavior of malware and the malware running successfully
in the Linux environment; relationships between the services
started in Windows and Network started in Windows inde-
pendent variablesmay be investigated via future research and
an increased sample size.

The findings suggest that samples which use particular
API calls are less likely to run successfully. The OpenSer-
viceA and OpenServiceW functions were never called in
Zero Wine suggesting that using these calls can cause com-
patibility issues with Wine. Another possible reason for this
could be that the services being opened are not available
through Wine.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Ahmadi, M., Sami, A., Rahimi, H., Yadegari, B.: Feature: malware
detection by behavioural sequential patterns. Comput. Fraud Secur.
8, 11–19 (2013)

2. Choudhary, S., Vidyarthi, M.D.: A simple method for detection
of metamorphic malware using dynamic analysis and text mining.
Procedia Comput. Sci. 54, 265–270 (2015)

3. CodeWeavers. TechnicalWhite Paper: Running applications under
crossover: an analysis of security risks (2008)

4. Davis,M.A., Bodmer, S.M., Lemasters, A.: Hacking ExposedMal-
ware and Rootkits: Malware and Rootkits Secrets and Solutions.
McGraw-Hill Education, New York (2009)

5. Elisan, C.C.: Malware, Rootkits & Botnets: A Beginner’s Guide.
McGraw-Hill Education, New York (2012)

6. Liangboonprakong, C., Sornil, O.: Classification of malware fam-
ilies based on N-grams sequential pattern features. In: 2013 IEEE
8th Conference on Industrial Electronics & Applications (ICIEA),
p. 777 (2013)

7. Ligh, M., Adair, S., Hartstein, B., Richard, M.: Malware Analyst’s
Cookbook and DVD: Tools and Techniques for FightingMalicious
Code, pap/dvdr edn. Wiley, Indianapolis (2010)

8. Malin, C.H., Casey, E., Aquilina, J.M.: Malware Forensics Field
Guide for Windows Systems: Digital Forensics Field Guides. Syn-
gress, Waltham (2012)

9. Moen, M.: Running Windows viruses with Wine (2005)
10. Provataki,A.,Katos,V.:Differentialmalware forensics.Dig. Inves-

tig. 10, 311–322 (2013)
11. Raymond, E.S.: The Cathedral & the Bazaar, 1st edn. O’Reilly

Media, Beijing (2001)
12. Secfence. Malware Analysis Delhi NCR, Memory Forensics

Malware Testing India, Mumbai, Pune, Bangalore—Structured
approach to malware reporting Static analysis, Dynamic analy-
sis, Memory Forensics & Packet analysis. CERT CIRT Teams -
Secfence Technologies

13. Seo, S.-H., Gupta, A., Mohamed Sallam, A., Bertino, E., Yim, K.:
Detecting mobile malware threats to homeland security through
static analysis. J. Netw. Comput. Appl. 38, 43–53 (2014)

14. Sharif, M., Lanzi, A., Giffin, J., Lee, W.: Impeding Malware Anal-
ysis Using Conditional Code Obfuscation

15. Shijo, P., Salim, A.: Integrated static and dynamic analysis for mal-
ware detection. Procedia Comput. Sci. 46, 804–811 (2015)

16. Touchette, F.: The evolution of malware. Netw. Secur. 2016(1),
11–14 (2016)

17. Vasilescu, M., Gheorghe, L., Tapus, N.: Practical malware analysis
based on sandboxing. In: 2014RoEduNetConference 13thEdition:
Networking in Education & Research Joint Event RENAM 8th
Conference, p. 1 (2014)

18. Wang, J., Shih, P.C., Carroll, J.M.: Revisiting Linuss law: benefits
and challenges of open source software peer review. Int. J. Hum.
Comput. Stud. 77, 52–65 (2015)

19. WineHQ. WineHQ: What is Wine?
20. ZeroWine (2008). http://zerowine.sourceforge.net/. Accessed

December 2008

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://zerowine.sourceforge.net/

	Security implications of running windows software on a Linux system using Wine: a malware analysis study
	Abstract
	1 Introduction
	2 Literature review
	2.1 Malware analysis
	2.2 Malware analysis techniques
	2.3 Malware analysis tools
	2.4 Malware on wine and related research

	3 Aims
	4 Methods
	4.1 Malware samples
	4.2 Analysis environment
	4.3 Analysis methodology

	5 Results
	5.1 Analysis results
	5.1.1 Narilam sample analysis
	5.1.2 Hikit sample analysis
	5.1.3 Stabuniq sample analysis
	5.1.4 Drixed sample analysis
	5.1.5 Batch wiper sample analysis
	5.1.6 Dialer sample analysis
	5.1.7 MyDoom sample analysis
	5.1.8 Minamps sample analysis
	5.1.9 PlugX, Korplug sample analysis
	5.1.10 Wykcores sample analysis
	5.1.11 Didrex sample analysis
	5.1.12 Dozmot sample analysis
	5.1.13 Potao sample analysis
	5.1.14 Gamarue sample analysis
	5.1.15 TDL/Alureon sample analysis
	5.1.16 SC-KeyLog sample analysis
	5.1.17 Wirenet sample analysis
	5.1.18 Dyzap sample analysis
	5.1.19 CoreBot sample analysis
	5.1.20 Kawpfuni sample analysis
	5.1.21 Skypii sample analysis
	5.1.22 4DW4R3 sample analysis
	5.1.23 Loki Bot sample analysis
	5.1.24 Nitol sample analysis
	5.1.25 Nivdort sample analysis
	5.1.26 Unknown sample 1 analysis
	5.1.27 Unknown sample 2 analysis
	5.1.28 Unknown sample 3 analysis
	5.1.29 Unknown sample 4 analysis
	5.1.30 Unknown sample 5 analysis

	5.2 Overall results
	5.3 Hypotheses testing

	6 Discussion
	7 Limitations
	8 Conclusion
	References




