49 research outputs found

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Shock Excited Molecules in NGC 1266 : ULIRG Conditions at the Center of a Bulge-dominated Galaxy

    Get PDF
    We investigate the far infrared (IR) spectrum of NGC 1266, a S0 galaxy that contains a massive reservoir of highly excited molecular gas. Using the Herschel Fourier Transform Spectrometer, we detect the 12CO ladder up to J = (13-12), [C I] and [N II] lines, and also strong water lines more characteristic of UltraLuminous IR Galaxies (ULIRGs). The 12CO line emission is modeled with a combination of a low-velocity C-shock and a photodissociation region. Shocks are required to produce the H2O and most of the high-J CO emission. Despite having an IR luminosity 30 times less than a typical ULIRG, the spectral characteristics and physical conditions of the interstellar medium of NGC 1266 closely resemble those of ULIRGs, which often harbor strong shocks and large-scale outflowsPeer reviewe

    Hereditary sensory neuropathy is caused by amutation in the delta subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct4) gene

    No full text
    A spontaneous autosomal recessive mutation was identified in the Sprague-Dawley rat strain with an early onset sensory neuropathy. The main clinical features of the mutation (mutilated foot, mf ), detectable shortly after birth, include ataxia, insensitivity to pain and foot ulceration. The pathological features include a severe reduction in the number of sensory ganglia and fibres. This mutant is therefore an excellent model for human hereditary sensory neuropathies. Here, we demonstrate that the mf locus maps to the distal end of rat chromosome 14, a region syntenic to human 2p13-p16 and proximal mouse 11. Sequence analysis of four candidate genes in this interval revealed a 1349G>A mutation in the chaperonin (delta) subunit 4 (Cct4) gene associated with the mf mutant. This change resulted in the substitution of a highly conserved cysteine for tyrosine at amino acid 450. Although we did not identify a mutation in the human CCT4 gene in a set of HSN patients, this result clearly demonstrates the pathological consequences of a defect in Cct4, a subunit of CCT (cytosolic chaperonin-containing t-complex peptide-1), involved in folding tubulin, actin and other cytosolic proteins. This is the first report of a mutation in a molecular chaperonin causing a hereditary neuropathy and raises the possibility that mis-folding proteins may be a cause of this group of neuropathies

    The case for thermalization as a contributor to the [C ii] deficit

    Get PDF
    The [C ii] deficit, which describes the observed decrease in the ratio of [C ii] 158 μm emission to continuum infrared emission in galaxies with high star formation surface densities, places a significant challenge to the interpretation of [C ii] detections from across the observable universe. In an attempt to further decode the cause of the [C ii] deficit, the [C ii] and dust continuum emission from 18 Local Volume galaxies has been split based on conditions within the interstellar medium where it originated. This is completed using the Key Insights in Nearby Galaxies: a Far-Infrared Survey with Herschel (KINGFISH) and Beyond the Peak (BtP) surveys and the wide-range of wavelength information, from UV to far-infrared emission lines, available for a selection of star-forming regions within these samples. By comparing these subdivided [C ii] emissions to isolated infrared emission and other properties, we find that the thermalization (collisional de-excitation) of the [C ii] line in H ii regions plays a significant role in the deficit observed in our sample. © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore