16 research outputs found

    Glucocorticoids promote breast cancer metastasis

    Get PDF
    Diversity within or between tumours and metastases (known as intra-patient tumour heterogeneity) that develops during disease progression is a serious hurdle for therapy(1-3). Metastasis is the fatal hallmark of cancer and the mechanisms of colonization, the most complex step in the metastatic cascade(4), remain poorly defined. A clearer understanding of the cellular and molecular processes that underlie both intra-patient tumour heterogeneity and metastasis is crucial for the success of personalized cancer therapy. Here, using transcriptional profiling of tumours and matched metastases in patient-derived xenograft models in mice, we show cancer-site-specific phenotypes and increased glucocorticoid receptor activity in distant metastases. The glucocorticoid receptor mediates the effects of stress hormones, and of synthetic derivatives of these hormones that are used widely in the clinic as anti-inflammatory and immunosuppressive agents. We show that the increase in stress hormones during breast cancer progression results in the activation of the glucocorticoid receptor at distant metastatic sites, increased colonization and reduced survival. Our transcriptomics, proteomics and phospho-proteomics studies implicate the glucocorticoid receptor in the activation of multiple processes in metastasis and in the increased expression of kinase ROR1, both of which correlate with reduced survival. The ablation of ROR1 reduced metastatic outgrowth and prolonged survival in preclinical models. Our results indicate that the activation of the glucocorticoid receptor increases heterogeneity and metastasis, which suggests that caution is needed when using glucocorticoids to treat patients with breast cancer who have developed cancer-related complications.Peer reviewe

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Inactivation of the UNC5C Netrin-1 receptor is associated with tumor progression in colorectal malignancies.

    No full text
    BACKGROUND & AIMS: The UNC5H netrin-1 receptors (UNC5H1-3 also called UNC5A-C) belong to the functional dependence receptors family, which share the ability to induce apoptosis in the absence of their ligands. Such a trait has been hypothesized to confer a tumor-suppressor activity. Indeed, cells harboring these receptors are thought to be dependent on ligand availability for their survival, thereby inhibiting uncontrolled tumor cell proliferation. We investigate here whether UNC5C acts as a tumor suppressor in colorectal malignancies. METHODS: The level of UNC5C was analyzed in a panel of 86 primary sporadic colorectal carcinomas. Loss of heterozygosity in the UNC5C locus and epigenetic alterations in the UNC5C promoter were also analyzed. Intestinal tumor progression was monitored in mice bearing both UNC5C and APC1638N mutations, and apoptosis was measured in intestinal tumors developed in UNC5C/APC1638N mutant mice. RESULTS: We show here that UNC5C expression is down-regulated in a large fraction of human colorectal cancers, mainly through promoter methylation. Moreover, in mice, inactivation of UNC5C is associated with increased intestinal tumor progression and a decrease in tumor cell apoptosis. CONCLUSIONS: The loss of UNC5C expression observed in human colorectal cancer is a selective advantage for tumor progression, in agreement with the dependence receptor hypothesis. Thus, the UNC5C dependence receptor is a tumor suppressor that regulates sporadic colorectal cancer

    Tyrosine phosphatase SHP2 increases cell motility in triple-negative breast cancer through the activation of SRC-family kinases

    No full text
    Tumor cell migration has a fundamental role in early steps of metastasis, the fatal hallmark of cancer. In the present study, we investigated the effects of the tyrosine phosphatase, SRC-homology 2 domain-containing phosphatase 2 (SHP2), on cell migration in metastatic triple-negative breast cancer (TNBC), an aggressive disease associated with a poor prognosis for which a targeted therapy is not yet available. Using mouse models and multiphoton intravital imaging, we have identified a crucial effect of SHP2 on TNBC cell motility in vivo. Further, analysis of TNBC cells revealed that SHP2 also influences cell migration, chemotaxis and invasion in vitro. Unbiased phosphoproteomics and biochemical analysis showed that SHP2 activates several SRC-family kinases and downstream targets, most of which are inducers of migration and invasion. In particular, direct interaction between SHP2 and c-SRC was revealed by a fluorescence resonance energy transfer assay. These results suggest that SHP2 is a crucial factor during early steps of TNBC migration to distant organs

    Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression

    No full text
    Chronic inflammation and cancer are intimately associated. This is particularly true for inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, which show a major increased risk for colorectal cancer. While the understanding of the molecular pathogenesis of IBD has recently improved, the mechanisms that link these chronic inflammatory states to colorectal cancer development are in large part unknown. One of these mechanisms is NF-κB pathway activation which in turn may contribute to tumor formation by providing anti-apoptotic survival signals to the epithelial cells. Based on the observation that netrin-1, the anti-apoptotic ligand for the dependence receptors DCC and UNC5H is up-regulated in colonic crypts in response to NF-κB, we show here that colorectal cancers from inflammatory bowel diseases patients have selected up-regulation of netrin-1. Moreover, we demonstrate that this inflammation-driven netrin-1 up-regulation is causal for colorectal cancer development as interference with netrin-1 autocrine loop in a mouse model for ulcerative colitis-associated colorectal cancer, while showing no effect on inflammation, inhibits colorectal cancer progression

    Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer

    No full text
    Netrin-1, an axon navigation cue was proposed to play a crucial role during colorectal tumorigenesis by regulating apoptosis. The netrin-1 receptors DCC and UNC5H were shown to belong to the family of dependence receptors that share the ability to induce apoptosis in the absence of their ligands. Such a trait confers on these receptors a tumor suppressor activity. Expression of one of these dependence receptors at the surface of a tumor cell is indeed speculated to render this cell dependent on ligand availability for its survival, hence inhibiting uncontrolled cell proliferation or metastasis. Consequently, it is a selective advantage for a tumor cell to lose this dependence receptor activity, as previously described with losses of DCC and UNC5H expression in human cancers. However, the model predicts that a similar advantage may be obtained by gaining autocrine expression of the ligand. We describe here that, unlike human nonmetastatic breast tumors, a large fraction of metastatic breast cancers overexpress netrin-1. Moreover, we show that netrin-1-expressing mammary metastatic tumor cell lines undergo apoptosis when netrin-1 expression is experimentally decreased or when decoy soluble receptor ectodomains are added. Such treatments prevent metastasis formation both in a syngenic mouse model of lung colonization of a mammary cancer cell line and in a model of spontaneous lung metastasis of xenografted human breast tumor. Thus, netrin-1 expression observed in a large fraction of human metastatic breast tumors confers a selective advantage for tumor cell survival and potentially represents a promising target for alternative anticancer therapeutic strategies

    Variants in the netrin-1 receptor UNC5C prevent apoptosis and increase risk of familial colorectal cancer.

    No full text
    International audienceBACKGROUND & AIMS: Expression of the netrin-1 dependence receptor UNC5C is reduced in many colorectal tumors; mice with the UNC5C mutations have increased progression of intestinal tumors. We investigated whether specific variants in UNC5C increase risk of colorectal cancer (CRC). METHODS: We analyzed the sequence of UNC5C in blood samples from 1801 patients with CRC and 4152 controls from 3 cohorts (France, United States, and Finland). Almost all cases from France and the United States had familial CRC; of the Finnish cases, 92 of 984 were familial. We analyzed whether CRC segregates with the UNC5C variant A628K in 3 families with histories of CRC. We also performed haplotype analysis to determine the origin of this variant. RESULTS: Of 817 patients with familial CRC, 14 had 1 of 4 different, unreported missense variants in UNC5C. The variants p.Asp353Asn (encodes D353N), p.Arg603Cys (encodes R603C), and p.Gln630Glu (encodes Q630E) did not occur significantly more often in cases than controls. The variant p.Ala628Lys (A628K) was detected in 3 families in the French cohort (odds ratio, 8.8; Wald's 95% confidence interval, 1.47-52.93; P = .03) and in 2 families in the US cohort (odds ratio, 1.9; P = .6) but was not detected in the Finnish cohort; UNC5C A628K segregated with CRC in families. Three families with A628K had a 109-kilobase identical haplotype that spanned most of UNC5C, indicating recent origin of this variant in white subjects (14 generations; 95% confidence interval, 6-36 generations). Transfection of HEK293T cells with UNC5C-A628K significantly reduced apoptosis compared with wild-type UNC5C, measured in an assay of active caspase-3. CONCLUSIONS: Inherited mutations in UNC5C prevent apoptosis and increase risk of CRC

    A high-throughput drug screen reveals means to differentiate triple-negative breast cancer.

    No full text
    Plasticity delineates cancer subtypes with more or less favourable outcomes. In breast cancer, the subtype triple-negative lacks expression of major differentiation markers, e.g., estrogen receptor α (ERα), and its high cellular plasticity results in greater aggressiveness and poorer prognosis than other subtypes. Whether plasticity itself represents a potential vulnerability of cancer cells is not clear. However, we show here that cancer cell plasticity can be exploited to differentiate triple-negative breast cancer (TNBC). Using a high-throughput imaging-based reporter drug screen with 9 501 compounds, we have identified three polo-like kinase 1 (PLK1) inhibitors as major inducers of ERα protein expression and downstream activity in TNBC cells. PLK1 inhibition upregulates a cell differentiation program characterized by increased DNA damage, mitotic arrest, and ultimately cell death. Furthermore, cells surviving PLK1 inhibition have decreased tumorigenic potential, and targeting PLK1 in already established tumours reduces tumour growth both in cell line- and patient-derived xenograft models. In addition, the upregulation of genes upon PLK1 inhibition correlates with their expression in normal breast tissue and with better overall survival in breast cancer patients. Our results indicate that differentiation therapy based on PLK1 inhibition is a potential alternative strategy to treat TNBC

    Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis

    Full text link
    Secretion of C-C chemokine ligand 2 (CCL2) by mammary tumours recruits CCR2-expressing inflammatory monocytes to primary tumours and metastatic sites, and CCL2 neutralization in mice inhibits metastasis by retaining monocytes in the bone marrow. Here we report a paradoxical effect of CCL2 in four syngeneic mouse models of metastatic breast cancer. Surprisingly, interruption of CCL2 inhibition leads to an overshoot of metastases and accelerates death. This is the result of monocyte release from the bone marrow and enhancement of cancer cell mobilization from the primary tumour, as well as blood vessel formation and increased proliferation of metastatic cells in the lungs in an interleukin (IL)-6- and vascular endothelial growth factor (VEGF)-A-dependent manner. Notably, inhibition of CCL2 and IL-6 markedly reduced metastases and increased survival of the animals. CCL2 has been implicated in various neoplasias and adopted as a therapeutic target. However, our results call for caution when considering anti-CCL2 agents as monotherapy in metastatic disease and highlight the tumour microenvironment as a critical determinant of successful anti-metastatic therapy
    corecore