144 research outputs found
Hfe Deficiency Impairs Pulmonary Neutrophil Recruitment in Response to Inflammation
Regulation of iron homeostasis and the inflammatory response are tightly linked to protect the host from infection. Here we investigate how imbalanced systemic iron homeostasis in a murine disease model of hereditary hemochromatosis (Hfe−/− mice) affects the inflammatory responses of the lung. We induced acute pulmonary inflammation in Hfe−/− and wild-type mice by intratracheal instillation of 20 µg of lipopolysaccharide (LPS) and analyzed local and systemic inflammatory responses and iron-related parameters. We show that in Hfe−/− mice neutrophil recruitment to the bronchoalveolar space is attenuated compared to wild-type mice although circulating neutrophil numbers in the bloodstream were elevated to similar levels in Hfe−/− and wild-type mice. The underlying molecular mechanisms are likely multifactorial and include elevated systemic iron levels, alveolar macrophage iron deficiency and/or hitherto unexplored functions of Hfe in resident pulmonary cell types. As a consequence, pulmonary cytokine expression is out of balance and neutrophils fail to be recruited efficiently to the bronchoalveolar compartment, a process required to protect the host from infections. In conclusion, our findings suggest a novel role for Hfe and/or imbalanced iron homeostasis in the regulation of the inflammatory response in the lung and hereditary hemochromatosis
The Increased Activity of TRPV4 Channel in the Astrocytes of the Adult Rat Hippocampus after Cerebral Hypoxia/Ischemia
The polymodal transient receptor potential vanilloid 4 (TRPV4) channel, a member of the TRP channel family, is a calcium-permeable cationic channel that is gated by various stimuli such as cell swelling, low pH and high temperature. Therefore, TRPV4-mediated calcium entry may be involved in neuronal and glia pathophysiology associated with various disorders of the central nervous system, such as ischemia. The TRPV4 channel has been recently found in adult rat cortical and hippocampal astrocytes; however, its role in astrocyte pathophysiology is still not defined. In the present study, we examined the impact of cerebral hypoxia/ischemia (H/I) on the functional expression of astrocytic TRPV4 channels in the adult rat hippocampal CA1 region employing immunohistochemical analyses, the patch-clamp technique and microfluorimetric intracellular calcium imaging on astrocytes in slices as well as on those isolated from sham-operated or ischemic hippocampi. Hypoxia/ischemia was induced by a bilateral 15-minute occlusion of the common carotids combined with hypoxic conditions. Our immunohistochemical analyses revealed that 7 days after H/I, the expression of TRPV4 is markedly enhanced in hippocampal astrocytes of the CA1 region and that the increasing TRPV4 expression coincides with the development of astrogliosis. Additionally, adult hippocampal astrocytes in slices or cultured hippocampal astrocytes respond to the TRPV4 activator 4-alpha-phorbol-12,-13-didecanoate (4αPDD) by an increase in intracellular calcium and the activation of a cationic current, both of which are abolished by the removal of extracellular calcium or exposure to TRP antagonists, such as Ruthenium Red or RN1734. Following hypoxic/ischemic injury, the responses of astrocytes to 4αPDD are significantly augmented. Collectively, we show that TRPV4 channels are involved in ischemia-induced calcium entry in reactive astrocytes and thus, might participate in the pathogenic mechanisms of astroglial reactivity following ischemic insult
Distinct Expression/Function of Potassium and Chloride Channels Contributes to the Diverse Volume Regulation in Cortical Astrocytes of GFAP/EGFP Mice
Recently, we have identified two astrocytic subpopulations in the cortex of GFAP-EGFP mice, in which the astrocytes are visualized by the enhanced green–fluorescent protein (EGFP) under the control of the human glial fibrillary acidic protein (GFAP) promotor. These astrocytic subpopulations, termed high response- (HR-) and low response- (LR-) astrocytes, differed in the extent of their swelling during oxygen-glucose deprivation (OGD). In the present study we focused on identifying the ion channels or transporters that might underlie the different capabilities of these two astrocytic subpopulations to regulate their volume during OGD. Using three-dimensional confocal morphometry, which enables quantification of the total astrocytic volume, the effects of selected inhibitors of K+ and Cl− channels/transporters or glutamate transporters on astrocyte volume changes were determined during 20 minute-OGD in situ. The inhibition of volume regulated anion channels (VRACs) and two-pore domain potassium channels (K2P) highlighted their distinct contributions to volume regulation in HR-/LR-astrocytes. While the inhibition of VRACs or K2P channels revealed their contribution to the swelling of HR-astrocytes, in LR-astrocytes they were both involved in anion/K+ effluxes. Additionally, the inhibition of Na+-K+-Cl− co-transporters in HR-astrocytes led to a reduction of cell swelling, but it had no effect on LR-astrocyte volume. Moreover, employing real-time single-cell quantitative polymerase chain reaction (PCR), we characterized the expression profiles of EGFP-positive astrocytes with a focus on those ion channels and transporters participating in astrocyte swelling and volume regulation. The PCR data revealed the existence of two astrocytic subpopulations markedly differing in their gene expression levels for inwardly rectifying K+ channels (Kir4.1), K2P channels (TREK-1 and TWIK-1) and Cl− channels (ClC2). Thus, we propose that the diverse volume changes displayed by cortical astrocytes during OGD mainly result from their distinct expression patterns of ClC2 and K2P channels
The evidence base for circulating tumour DNA blood-based biomarkers for the early detection of cancer: a systematic mapping review
Background: The presence of circulating cell-free DNA from tumours in blood (ctDNA) is of major importance to those interested in early cancer detection, as well as to those wishing to monitor tumour progression or diagnose the presence of activating mutations to guide treatment. In 2014, the UK Early Cancer Detection Consortium undertook a systematic mapping review of the literature to identify blood-based biomarkers with potential for the development of a non-invasive blood test for cancer screening, and which identified this as a major area of interest. This review builds on the mapping review to expand the ctDNA dataset to examine the best options for the detection of multiple cancer types. Methods: The original mapping review was based on comprehensive searches of the electronic databases Medline, Embase, CINAHL, the Cochrane library, and Biosis to obtain relevant literature on blood-based biomarkers for cancer detection in humans (PROSPERO no. CRD42014010827). The abstracts for each paper were reviewed to determine whether validation data were reported, and then examined in full. Publications concentrating on monitoring of disease burden or mutations were excluded. Results: The search identified 94 ctDNA studies meeting the criteria for review. All but 5 studies examined one cancer type, with breast, colorectal and lung cancers representing 60% of studies. The size and design of the studies varied widely. Controls were included in 77% of publications. The largest study included 640 patients, but the median study size was 65 cases and 35 controls, and the bulk of studies (71%) included less than 100 patients. Studies either estimated cfDNA levels non-specifically or tested for cancer-specific mutations or methylation changes (the majority using PCR-based methods). Conclusion: We have systematically reviewed ctDNA blood biomarkers for the early detection of cancer. Pre-analytical, analytical, and post-analytical considerations were identified which need to be addressed before such biomarkers enter clinical practice. The value of small studies with no comparison between methods, or even the inclusion of controls is highly questionable, and larger validation studies will be required before such methods can be considered for early cancer detection
Acute kidney injury in patients treated with immune checkpoint inhibitors
Background: Immune checkpoint inhibitor-associated acute kidney injury (ICPi-AKI) has emerged as an important toxicity among patients with cancer. Methods: We collected data on 429 patients with ICPi-AKI and 429 control patients who received ICPis contemporaneously but who did not develop ICPi-AKI from 30 sites in 10 countries. Multivariable logistic regression was used to identify predictors of ICPi-AKI and its recovery. A multivariable Cox model was used to estimate the effect of ICPi rechallenge versus no rechallenge on survival following ICPi-AKI. Results: ICPi-AKI occurred at a median of 16 weeks (IQR 8-32) following ICPi initiation. Lower baseline estimated glomerular filtration rate, proton pump inhibitor (PPI) use, and extrarenal immune-related adverse events (irAEs) were each associated with a higher risk of ICPi-AKI. Acute tubulointerstitial nephritis was the most common lesion on kidney biopsy (125/151 biopsied patients [82.7%]). Renal recovery occurred in 276 patients (64.3%) at a median of 7 weeks (IQR 3-10) following ICPi-AKI. Treatment with corticosteroids within 14 days following ICPi-AKI diagnosis was associated with higher odds of renal recovery (adjusted OR 2.64; 95% CI 1.58 to 4.41). Among patients treated with corticosteroids, early initiation of corticosteroids (within 3 days of ICPi-AKI) was associated with a higher odds of renal recovery compared with later initiation (more than 3 days following ICPi-AKI) (adjusted OR 2.09; 95% CI 1.16 to 3.79). Of 121 patients rechallenged, 20 (16.5%) developed recurrent ICPi-AKI. There was no difference in survival among patients rechallenged versus those not rechallenged following ICPi-AKI. Conclusions: Patients who developed ICPi-AKI were more likely to have impaired renal function at baseline, use a PPI, and have extrarenal irAEs. Two-thirds of patients had renal recovery following ICPi-AKI. Treatment with corticosteroids was associated with improved renal recovery
Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis
Supported by F. Hoffmann–La Roche
- …