17 research outputs found

    ROS-dependent signaling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes

    Get PDF
    Abstract Like all aerobic organisms, plants and algae co-opt reactive oxygen species (ROS) as signaling molecules to drive cellular responses to changes in their environment. In this respect, there is considerable commonality between all eukaryotes imposed by the constraints of ROS chemistry, similar metabolism in many subcellular compartments, the requirement for a high degree of signal specificity and the deployment of thiol peroxidases as transducers of oxidizing equivalents to regulatory proteins. Nevertheless, plants and algae carry out specialised signaling arising from oxygenic photosynthesis in chloroplasts and photoautotropism, which often induce an imbalance between absorption of light energy and the capacity to use it productively. A key means of responding to this imbalance is through communication of chloroplasts with the nucleus to adjust cellular metabolism. Two ROS, singlet oxygen (1O2) and hydrogen peroxide (H2O2), initiate distinct signaling pathways when photosynthesis is perturbed. 1O2, because of its potent reactivity means that it initiates but does not transduce signaling. In contrast, the lower reactivity of H2O2 means that it can also be a mobile messenger in a spatially-defined signaling pathway. How plants translate a H2O2 message to bring about changes in gene expression is unknown and therefore, we draw on information from other eukaryotes to propose a working hypothesis. The role of these ROS generated in other subcellular compartments of plant cells in response to HL is critically considered alongside other eukaryotes. Finally, the responses of animal cells to oxidative stress upon high irradiance exposure is considered for new comparisons between plant and animal cells

    A four-dimensional mesoscale map of the spring bloom in the northeast Atlantic (POMME experiment): Results of a prognostic model

    No full text
    International audienceA prognostic high-resolution model is established to provide an integrated view of the evolution of the spring bloom during the Programme OcĂ©an Multidisciplinaire MĂ©so Echelle (POMME) experiments carried out at sea from February to May 2001 (16-22°W and 38°-45°N). Data collected during the first survey were used for model initialization, and data from three other cruises were used for model validation. The model successfully predicts the time evolution of the main reservoirs and fluxes, except for a storm event during postbloom conditions, for which the biological impact is underestimated. The bloom is long in duration (2 months), has low intensity (1 mg Chl m À3), and is characterized by a small f-ratio (0.45) and a small e-ratio (0.05). Furthermore, the model reveals much stronger space and time variability than sampled in the data. This large variability results both from the synoptic atmospheric variability and from the stirring induced by oceanic mesoscale eddies. In particular, the bloom starts in specific submesoscale features that correspond to filaments of minimum mixed layer depth. On short timescales (2-3 days), space and time variability have the same order of magnitude. On the seasonal timescale, time variability is larger than space variability. Considering the transient state of the system, this modeling exercise is also used to quantify the nonsynopticity of the observations, which occur mostly during bloom conditions, a crucial point for the data interpretation

    Latitudinal shift of the Atlantic Meridional Overturning Circulation source regions under a warming climate

    No full text
    International audienceThe strength of the Atlantic Meridional Overturning Circulation, a key indicator of the climate state, is maintained by the subduction of dense water that feeds the deep southwards branch. At present, this subduction occurs almost entirely in the subpolar region, in the Labrador, Irminger and Nordic seas; however, whether this will continue under climate change is unknown. Here we use a quantitative Lagrangian diagnostic applied to climate model output to show that, in response to warming, the main source regions of this mixed-layer subduction shift northwards to the Arctic Basin and southwards to the subtropical gyre. These shifts are explained by changes in background stratification, mixed-layer depth and ocean circulation, highlighting the need to consider the full three-dimensionality of the circulation and its changes to accurately predict the future climate state

    Effect of lung recruitment and titrated Positive End-Expiratory Pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome - A randomized clinical trial

    No full text
    IMPORTANCE: The effects of recruitment maneuvers and positive end-expiratory pressure (PEEP) titration on clinical outcomes in patients with acute respiratory distress syndrome (ARDS) remain uncertain. OBJECTIVE: To determine if lung recruitment associated with PEEP titration according to the best respiratory-system compliance decreases 28-day mortality of patients with moderate to severe ARDS compared with a conventional low-PEEP strategy. DESIGN, SETTING, AND PARTICIPANTS: Multicenter, randomized trial conducted at 120 intensive care units (ICUs) from 9 countries from November 17, 2011, through April 25, 2017, enrolling adults with moderate to severe ARDS. INTERVENTIONS: An experimental strategy with a lung recruitment maneuver and PEEP titration according to the best respiratory-system compliance (n = 501; experimental group) or a control strategy of low PEEP (n = 509). All patients received volume-assist control mode until weaning. MAIN OUTCOMES AND MEASURES: The primary outcome was all-cause mortality until 28 days. Secondary outcomes were length of ICU and hospital stay; ventilator-free days through day 28; pneumothorax requiring drainage within 7 days; barotrauma within 7 days; and ICU, in-hospital, and 6-month mortality. RESULTS: A total of 1010 patients (37.5% female; mean [SD] age, 50.9 [17.4] years) were enrolled and followed up. At 28 days, 277 of 501 patients (55.3%) in the experimental group and 251 of 509 patients (49.3%) in the control group had died (hazard ratio [HR], 1.20; 95% CI, 1.01 to 1.42; P = .041). Compared with the control group, the experimental group strategy increased 6-month mortality (65.3% vs 59.9%; HR, 1.18; 95% CI, 1.01 to 1.38; P = .04), decreased the number of mean ventilator-free days (5.3 vs 6.4; difference, −1.1; 95% CI, −2.1 to −0.1; P = .03), increased the risk of pneumothorax requiring drainage (3.2% vs 1.2%; difference, 2.0%; 95% CI, 0.0% to 4.0%; P = .03), and the risk of barotrauma (5.6% vs 1.6%; difference, 4.0%; 95% CI, 1.5% to 6.5%; P = .001). There were no significant differences in the length of ICU stay, length of hospital stay, ICU mortality, and in-hospital mortality. CONCLUSIONS AND RELEVANCE: In patients with moderate to severe ARDS, a strategy with lung recruitment and titrated PEEP compared with low PEEP increased 28-day all-cause mortality. These findings do not support the routine use of lung recruitment maneuver and PEEP titration in these patients. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01374022
    corecore