556 research outputs found

    Interactions between vaccinia virus and sensitized macrophages in vitro

    Get PDF
    The action of peritoneal exudate cells (PEC) from normal and vaccinia virus infected mice on infectious vaccinia virus particles was investigatedin vitro. PEC from immune mice showed a significantly higher infectivity titre reduction (virus clearance, VC) than normal cells. This effect could be clearly attributed to the macrophage. Vaccinia virus multiplied in PEC from normal animals while there was no virus propagation in cells from immunized mice. The release of adsorbed or engulfed virus was reduced significantly in PEC from immunized animals. Anti-vaccinia-antibodies seem to activate normal macrophages to increased virus clearance. This stimulating effect was demonstrable only in the IgG fraction of the antiserum. The activity of macrophages from mice injected three times over a period of 14 days with vaccinia virus could be entirely blocked with anti-mouse-IgG, while PEC from mice injected one time six days previously were not inhibited

    Fluorescent carbon dioxide indicators

    Get PDF
    Over the last decade, fluorescence has become the dominant tool in biotechnology and medical imaging. These exciting advances have been underpinned by the advances in time-resolved techniques and instrumentation, probe design, chemical / biochemical sensing, coupled with our furthered knowledge in biology. Complementary volumes 9 and 10, Advanced Concepts of Fluorescence Sensing: Small Molecule Sensing and Advanced Concepts of Fluorescence Sensing: Macromolecular Sensing, aim to summarize the current state of the art in fluorescent sensing. For this reason, Drs. Geddes and Lakowicz have invited chapters, encompassing a broad range of fluorescence sensing techniques. Some chapters deal with small molecule sensors, such as for anions, cations, and CO2, while others summarize recent advances in protein-based and macromolecular sensors. The Editors have, however, not included DNA or RNA based sensing in this volume, as this were reviewed in Volume 7 and is to be the subject of a more detailed volume in the near future

    Modal Series Expansions for Plane Gravitational Waves

    Full text link
    [EN] Propagation of gravitational disturbances at the speed of light is one of the key predictions of the General Theory of Relativity. This result is now backed indirectly by the observations of the behavior of the ephemeris of binary pulsar systems. These new results have increased the interest in the mathematical theory of gravitational waves in the last decades, and severalmathematical approaches have been developed for a better understanding of the solutions. In this paper we develop a modal series expansion technique in which solutions can be built for plane waves from a seed integrable function. The convergence of these series is proven by the Raabe-Duhamel criteria, and we show that these solutions are characterized by a well-defined and finite curvature tensor and also a finite energy content.Acedo Rodríguez, L. (2016). Modal Series Expansions for Plane Gravitational Waves. Gravitation and Cosmology. 22(3):251-257. doi:10.1134/S0202289316030026S251257223A. Einstein and N. Rosen, Journal of the Franklin Institute 223, 43–54 (1937).N. Rosen, Gen. Rel. Grav. 10, 351–364 (1979).C. Sivaram, Bull. Astr. Soc. India 23, 77–83 (1995).J. M. Weisberg, D. J. Nice, and J. H. Taylor, Astroph. J. 722, 1030–1034(2010); arXiv: 1011.0718.B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016).J. B. Griffiths, Colliding waves in general relativity (Clarendon, Oxford, 1991).S. Chandrasekhar, The mathematical theory of black holes (Clarendon, Oxford, 1983).D. Bini, V. Ferrari and J. Ibañez, Nuovo Cim. B 103, 29–44 (1989).L. Acedo, G. González-Parra, and A. J. Arenas, Nonlinear Analysis: Real World Applications 11, 1819–1825 (2010).L. Acedo, G. González-Parra, and A. J. Arenas, Physica A 389, 1151–1157 (2010).G. González-Parra, L. Acedo, and A. J. Arenas, Numerical Algorithms, published online 2013. doi 10.1007/s11075-013-9776-xW. Rindler, Relativity: Special, General and Cosmological, 2nd ed. (Oxford Univ., New York, 2006).G. Arfken, Mathematical Methods for Physicists, 3rd. ed. (Academic, Orlando, Florida, 1985).L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 3rd ed. (Pergamon, New York, 1971).O. Costin, “Topological construction of transseries and introduction to generalized Borel summability,” in Analyzable Functions and Applications, Ed. by O. Costin, M. D. Kruskal, and A. Macintyre, Contemp. Math. 373 (Providence, RI, USA: Am. Math. Soc., 2005); arXiv: math/0608309.S. R. Coleman, Phys. Lett. B 70, 59–60 (1977).W. B. Campbell and T. A. Morgan, Phys. Lett. B 84, 87–88 (1979).A. S. Rabinowitch, Int. J. Adv. Math. Sciences 1 (3), 109–121 (2013).A. Feinstein and J. Ibañez, Phys. Rev. D 39 (2), 470–473 (1989)

    Diversity in fertility potential and organo-sulphur compounds among garlics from Central Asia

    Get PDF
    Extending the collection of garlic (Allium sativum L.) accessions is an important means that is available for broadening the genetic variability of this cultivated plant, with regard to yield, quality, and tolerance to biotic and abiotic traits; it is also an important means for restoring fertility and flowering. In the framework of the EU project Garlic and Health, 120 garlic accessions were collected in Central Asia - the main centre of garlic diversity. Plants were documented and thereafter maintained in field collections in both Israel and The Netherlands. The collection was evaluated for biological and economic traits. Garlic clones vary in most vegetative characteristics (leaf number, bulb size and structure), as well as in floral scape elongation and inflorescence development. A clear distinction was made between incomplete bolting and bolting populations; most of the accessions in the latter populations produced flowers with fertile pollen and receptive stigma. Wide variations were recorded with regard to differentiation of topsets, their size, number and rapidity of development. Furthermore, significant variation in organo-sulphur compounds (alliin, isoalliin, allicin and related dipeptides) was found within garlic collections and between plants grown under differing environmental conditions. Genetic fingerprinting by means of AFLP markers revealed three distinct groups within this collection, differing also in flowering ability and organo-S content

    The brain is a DJ using neuropeptides as sensory crossfaders

    Get PDF
    Sensory loss induces cross-modal plasticity, often resulting in altered performance in remaining sensory modalities. Whereas much is known about the macroscopic mechanisms underlying cross-modal plasticity, only scant information exists about its cellular and molecular underpinnings. We found that Caenorhabditis elegans nematodes deprived of a sense of body touch exhibit various changes in behavior, associated with other unimpaired senses. We focused on one such behavioral alteration, enhanced odor sensation, and sought to reveal the neuronal and molecular mechanisms that translate mechanosensory loss into improved olfactory acuity. To this end, we analyzed in mechanosensory mutants food-dependent locomotion patterns that are associated with olfactory responses and found changes that are consistent with enhanced olfaction. The altered locomotion could be reversed in adults by optogenetic stimulation of the touch receptor (mechanosensory) neurons. Furthermore, we revealed that the enhanced odor response is related to a strengthening of inhibitory AWC→AIY synaptic transmission in the olfactory circuit. Consistently, inserting in this circuit an engineered electrical synapse that diminishes AWC inhibition of AIY counteracted the locomotion changes in touch-deficient mutants. We found that this cross-modal signaling between the mechanosensory and olfactory circuits is mediated by neuropeptides, one of which we identified as FLP-20. Our results indicate that under normal function, ongoing touch receptor neuron activation evokes FLP-20 release, suppressing synaptic communication and thus dampening odor sensation. In contrast, in the absence of mechanosensory input, FLP-20 signaling is reduced, synaptic suppression is released, and this enables enhanced olfactory acuity; these changes are long lasting and do not represent ongoing modulation, as revealed by optogenetic experiments. Our work adds to a growing literature on the roles of neuropeptides in cross-modal signaling, by showing how activity-dependent neuropeptide signaling leads to specific cross-modal plastic changes in neural circuit connectivity, enhancing sensory performance.status: publishe

    Bi-Directional Effect of Cholecystokinin Receptor-2 Overexpression on Stress-Triggered Fear Memory and Anxiety in the Mouse

    Get PDF
    Fear, an emotional response of animals to environmental stress/threats, plays an important role in initiating and driving adaptive response, by which the homeostasis in the body is maintained. Overwhelming/uncontrollable fear, however, represents a core symptom of anxiety disorders, and may disturb the homeostasis. Because to recall or imagine certain cue(s) of stress/threats is a compulsory inducer for the expression of anxiety, it is generally believed that the pathogenesis of anxiety is associated with higher attention (acquisition) selectively to stress or mal-enhanced fear memory, despite that the actual relationship between fear memory and anxiety is not yet really established. In this study, inducible forebrain-specific cholecystokinin receptor-2 transgenic (IF-CCKR-2 tg) mice, different stress paradigms, batteries of behavioral tests, and biochemical assays were used to evaluate how different CCKergic activities drive fear behavior and hormonal reaction in response to stresses with different intensities. We found that in IF-CCKR-2 tg mice, contextual fear was impaired following 1 trial of footshock, while overall fear behavior was enhanced following 36 trials of footshock, compared to their littermate controls. In contrast to a standard Yerkes-Dodson (inverted-U shaped) stress-fear relationship in control mice, a linearized stress-fear curve was observed in CCKR-2 tg mice following gradient stresses. Moreover, compared to 1 trial, 36 trials of footshock in these transgenic mice enhanced anxiety-like behavior in other behavioral tests, impaired spatial and recognition memories, and prolonged the activation of adrenocorticotropic hormone (ACTH) and glucocorticoids (CORT) following new acute stress. Taken together, these results indicate that stress may trigger two distinctive neurobehavioral systems, depending on both of the intensity of stress and the CCKergic tone in the brain. A “threshold theory” for this two-behavior system has been suggested

    Astrocytes: orchestrating synaptic plasticity?

    Get PDF
    Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes.Comment: 63 pages, 4 figure
    corecore