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Abstract. Extending the collection of garlic (Allium sativum L.) accessions is an important means that is

available for broadening the genetic variability of this cultivated plant, with regard to yield, quality, and

tolerance to biotic and abiotic traits; it is also an important means for restoring fertility and flowering. In

the framework of the EU project ‘Garlic and Health’, 120 garlic accessions were collected in Central Asia

– the main centre of garlic diversity. Plants were documented and thereafter maintained in field col-

lections in both Israel and The Netherlands. The collection was evaluated for biological and economic

traits. Garlic clones vary in most vegetative characteristics (leaf number, bulb size and structure), as well

as in floral scape elongation and inflorescence development. A clear distinction was made between

incomplete bolting and bolting populations; most of the accessions in the latter populations produced

flowers with fertile pollen and receptive stigma. Wide variations were recorded with regard to differ-

entiation of topsets, their size, number and rapidity of development. Furthermore, significant variation in

organo-sulphur compounds (alliin, isoalliin, allicin and related dipeptides) was found within garlic

collections and between plants grown under differing environmental conditions. Genetic fingerprinting

by means of AFLP markers revealed three distinct groups within this collection, differing also in

flowering ability and organo-S content.

Abbreviations: AFLPTM – amplified fragment length polymorphism; HPLC-UV – high performance liquid

chromatography ultra violet; PCA – principal component analysis; alliinase – S-alkyl(en)yl-L-cysteine

sulphoxide lyase; alliin – (þ)-S-allyl-L-cysteine sulphoxide; isoalliin – S-(trans-1-propenyl)-L-cysteine

sulphoxide; GLUALCS – g-glutamyl-S-allyl-cysteine; isoGLUALCS – g-glutamyl-S-(trans-1-propenyl)-

cysteine; allicin – diallyl thiosulphinate.

Introduction

Many Allium species are consumed as fresh or processed condiments, are used as

ornamentals, or provide sources of natural therapeutic products. Next to onion,

garlic (Allium sativum L.) is the second most widely used Allium worldwide. Garlic
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leaves and young inflorescences are consumed as green vegetables, while the fresh

bulbs serve as a popular condiment and are also used as a flavouring agent in many

processed foods. Furthermore, large quantities of garlic are consumed as a func-

tional food or for pharmaceutical purposes (Kik et al. 2001).

Garlic is a sterile plant, which is propagated vegetatively, therefore genetic variation

can be increased only by somaclonal variation, induced mutations or genetic trans-

formation (Novak 1990; Burba 1993; Kondo et al. 2000). Restoration of fertility and,

therefore, of sexual reproduction would permit genetic studies and classical breeding

of garlic. In addition, fast propagation of desired genotypes via true seeds would be

expected to result in reduction of storage costs and fewer injuries caused in the pro-

duction field by viruses, diseases and pests transmitted by infected propagules.

Fertility restoration in garlic has been attempted by many researchers (e.g.,

Kononkov 1953; Novak and Havranek 1975; Konvicka 1984; Etoh et al. 1988;

Pooler and Simon 1994; Kamenetsky et al. 2004), and the presence of topsets in the

inflorescence has been suggested to be one of the major causes of sterility. In 1980s,

fertile garlic was collected in the Tien Shan Mountains between Kazakhstan and

China (Etoh 1986; Etoh et al. 1988). Pooler and Simon (1994) improved seed set by

scape detachment and removal of topsets, but seed germination was low, ranging

between 10 and 12%. Later, Inaba et al. (1995), Jenderek (1998) and Kamenetsky

et al. (2003) selected some fertile lines and obtained 50,000, 1.2 million, and

hundreds of thousands viable garlic seeds, respectively.

A significant trait of garlic and other Alliums is the specific odour of organo-sulphur

compounds, the composition and amount of which are strongly affected by genetic and

environmental factors (for a recent review, see Randle and Lancaster 2002). The pre-

cursors of most organo-S compounds in Alliums are stable non-volatile odourless amino

acids, including S-alk(en)yl cysteine sulphoxides and related storage dipeptides. Garlic

is richer in alliin [(þ)-S-allyl-L-cysteine sulfoxide] than most other plants in the genus;

in fresh bulbs its concentration reaches 1.4% (Koch and Lawson 1996; Keusgen 2002).

When fresh tissue is disrupted, the sulphur compounds are hydrolysed by alliinase

(S-alkyl(en)yl-L-cysteine sulphoxide lyase) via fast and complicated metabolic path-

way(s), to release a complex of reactive organosulphur compounds with characteristic

flavour and striking bioactivity. The main compound, allicin (diallyl thiosulphinate) is

unstable at room temperature. It is, however, the main source for the typical flavour of

garlic (Lancaster and Boland 1990). In onion, significant differences in flavour and

pungency were attributed to differences in sulphur uptake as well as in essential com-

ponents of the sulphur metabolic pathway (Randle and Lancaster 2002). Similar ex-

planations may be applicable to the significant differences between garlic cultivars.

Modern taxonomy subdivides the world’s garlic germplasm into five distinct

groups: Sativum, Ophioscorodon, Longicuspis, Subtropical and Pekinense (Fritsch

and Friesen 2002). The Longicuspis group from Central Asia is recognised as the

most primitive, the one from which the other groups were derived (Maaß and Klaas

1995; Etoh and Simon 2002; Fritsch and Friesen 2002). Central Asia was hy-

pothesised to be the primary centre of garlic evolution and diversity (Fritsch and

Friesen 2002), and recent studies on primitive garlic types in the Tien-Shan

Mountains strongly support this assumption (Etoh 1986; Kotlinska et al. 1991;
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Kamenetsky et al. 2003). It is to be expected that considerable variation in garlic

germplasm is present in this region, and that it should be manifested in resistance=
tolerance to pests and diseases, better adaptation to abiotic stresses, as well as traits

related to sexual reproduction and quality.

In order to develop a highly varied garlic collection, which is of pivotal im-

portance for the future development of the crop, missions to Central Asia were

undertaken. In the present paper we report on the assessment of a collection in

Central Asia by means of amplified fragment length polymorphism (AFLP)

markers, developmental traits, and contents of various organo-S-compounds.

Materials and methods

Collection

Garlic bulbs of 120 accessions were collected in May–September 2000 in local

village markets in Central Asia (Figure 1). All details of collection sites and local

environments were recorded in compliance with IPGRI plant passport regulations

(Astley et al. 1982). Original records are kept by R.K., Bet Dagan, Israel.

Evaluation for vegetative and generative traits

For evaluation, the collection was planted both in The Netherlands and in Israel.

Photoperiod and air temperatures during the respective growing periods are

presented in Figure 2. In The Netherlands, individual cloves were planted in

Figure 1. Collecting sites in Uzbekistan, Kazakhstan, Kirgizia and Tadjikistan in 2000. The original

records on collection sites and local environments are kept in Bet Dagan, Israel.
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October 2000 and 2001 in an experimental plot in Plant Research International,

Wageningen. Mature bulbs were harvested in August–September. Standard agri-

cultural practice was employed throughout.

In Israel, in October–November 2000 and 2001, bulbs were stored at 5 8C, RH

65–70%, for 8 weeks. Thereafter, individual cloves were planted in a designated

plot in the Experimental Farm of the Faculty of Agricultural, Food and Environ-

mental Quality Sciences of the Hebrew University of Jerusalem, in Rehovot.

Standard agricultural practice was employed throughout. Phenological records were

taken in Israel between November and July, in 2001 and 2002; they included leaf

number prior to bolting, maximal scape length at bolting; date of spathe opening;

topset=flower ratio in the inflorescence, and bulb structure. Statistical analysis of

morphological and phenological characteristics was based on one-way ANOVA,

and Tukey’s test and Student’s t-test were used for mean separation.

Pollen germination ability was assessed in Israel in May–July 2001 according to

Hong and Etoh (1996). Stamens were collected at anthesis, and crushed in Petri

dishes containing 1% agarþ 15% sucrose, and pollen germinability was determined

Figure 2. Daylength in Israel (A) and The Netherlands (B) and averaged weekly mean maximum and

minimum temperatures in Bet Dagan, Israel (C) and Wageningen, The Netherlands (D) during the

respective garlic growing seasons.
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using a light microscope, following a 2- to 3-h incubation in daylight at 23–26 8C.

Stigma receptivity was determined according to Dafni and Maues (1998).

Macherey-Nagel Peroxtesmo Ko peroxidase test paper (15 mm� 15 mm) was

soaked in 1 ml distilled water, and 1–2 droplets of the solution were applied directly

onto freshly harvested mature stigmas. The development of blue colour indicated

stigma receptivity.

Seed viability

Seeds were harvested upon maturation, dried out, threshed and stored in tightly

sealed plastic bags at 20 8C. In October, garlic seed viability was assessed using the

tetrazolium staining test. Seeds were imbibed overnight in a beaker containing tap

water at 20–25 8C, in the dark. The flat side of the seed coat was carefully scratched

with a sharp scalpel, avoiding the endosperm and the embryo. Incised seeds were

placed in 1% water solution of 2,3,5-triphenyl tetrazolium chloride, and incubated

in the dark at 30 8C for 12 h. Thereafter, the embryos of treated seeds were exposed,

and the intensity of the red staining of the entire embryo, root-tip and endosperm

correlated with viability (Peters 2000).

DNA isolation and AFLP fingerprinting

To assess the diversity of the collected clones, AFLP fingerprinting based on one

primer enzyme combination (E36M52A, E36¼GAC TGC GTA CCA ATT CAC C,

M52¼GAT GAG TCC TGA GTA ACC C) was performed in The Netherlands.

The assay resulted in amplification of 80–120 fragments in each of the tested garlic

accessions. The 20 clearest markers were analysed with the PHYLIP (Phylogeny

Inference Package) software package, Version 3.5c. The complete AFLP-

fingerprint comparison was based on the presence or absence of each of the 20

selected bands.

In order to compare the grouping of the garlic germplasm by means of AFLP

markers with the groupings previously determined with isozyme and RAPD

markers (Maaß and Klaas 1995), an initial AFLP fingerprinting (van Heusden et al.

2000) was made on 30 accessions from the garlic collection in Gatersleben,

Germany. This comparison resulted in a similar classification of garlic accessions to

that made by Maaß and Klaas (1995). Therefore, the unique primer enzyme

combination was used to assess the variability in the garlic accessions collected in

Central Asia.

Organo-S compound analysis

A recently developed high performance liquid chromatography (HPLC) method for

the simultaneous measurement of organo-S compounds was employed (Arnault
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et al. 2003) in September 2002 on freshly harvested bulbs of 15 accessions from

The Netherlands. In addition, comparison was made between five identical ac-

cessions, grown in parallel in Israel and The Netherlands. The mature, freshly

harvested bulbs were sent to France in July and September 2002, respectively.

S-compound analysis was performed 4 weeks after harvest. Five bulbs of each

accession served as replications for the analysis of the following organo-S com-

pounds under alliinase-inhibiting condition: alliin [(þ)-S-allyl-L-cysteine sulph-

oxide], isoalliin (S-(trans-1-propenyl)-L-cysteine sulphoxide), GLUALCS

(g-glutamyl-S-allyl-cysteine), isoGLUALCS (g-glutamyl-S-(trans-1-propenyl)-

cysteine), and allicin (diallyl thiosulphinate).

Sampling procedure: 1 g of the fresh bulb was homogenised with 3 ml methanol=
water (80=20) v=v þ 0.05% formic acid (pH< 3) at room temperature. An aliquot

was diluted 10 times and filtered through a polyvinylidene difluoride (PVDF)

membrane with 0.2 mm pore diameter. A 15-ml sample of the filtrate was injected

into an HPLC column. Analysis of garlic extracts was performed with a Waters 616

pump, a DAD 996 diode-array detector and a Waters 717 autosampler (Waters

Corporation, Milford, MA, USA). Compounds were separated on a 150 mm�
3 mm i.d.� 3 mm particle-size Hypurity Elite C18 column (Thermo Quest), at 38 8C
(Thermo Hypersil Division, Keystone, Bellefonte, PA, USA) and a UV detector was

operated at 208 nm. The eluate flow was 0.4 ml=min. The mobile phase consisted

of: A, 20 mM sodium dihydrogen phosphateþ 10 mM heptane sulphonic acid, pH

2.1 (adjusted with 85% orthophosphoric acid); and B, acetonitrile �20 mM sodium

dihydrogen phosphateþ 10 mM heptane sulphonic acid, pH 2.1 (50=50). The elu-

tion programme was in gradient mode. Data acquisition was done with Millennium

software (Waters Corporation). Principal Component Analysis (PCA) (Wold et al.

1987) was used for statistical data analysis to show separation among the different

accessions. Statistical analyses were based on Nested ANOVA, followed by Tu-

key’s HSD test, and on two-way ANOVA, followed by contrast tests for each

accession.

Results and discussion

Assessment of variation within the collection by AFLP fingerprinting

A single AFLP primer combination was used for classification of 111 garlic accessions

from Central Asia. The separation into two distinct groups, namely Sativum (86 ac-

cessions) and Longicuspis (25 accessions) was immediately obvious, and further

separation of the Longicuspis group, by the same AFLP primer combination, into two

subgroups of 15 and 10 accessions, respectively, was evident (Figure 3).

Sativum group. In addition to 82 accessions with identical and complete AFLP

fingerprinting patterns, four accessions were also classified as members of the

Sativum group, despite the facts that two of them were short of two AFLP
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fragments, a third lacked one of these two fragments, and the fourth had an ad-

ditional fragment. The 86 clones were analogous to the Sativum group II a,b in the

classification by Maaß and Klaas (1995).

Longicuspis subgroup A. Fifteen accessions exhibited identical and complete

AFLP fingerprinting patterns, which differed distinctly from that of the Sativum

group. These plants were identified as a Longicuspis group I or IV in agreement

with the Maaß and Klaas (1995) classification, but we were not able to determine

conclusively whether it was subgroup I or IV.

Longicuspis subgroup B. Ten additional accessions had identical and complete

AFLP patterns, which differed from the above two, and they were identified as

belonging to Longicuspis group IV according to the classification of Maaß and

Klaas (1995).

Modern taxonomy sub-classifies the global A. sativum species complex into five

groups (Fritsch and Friesen 2002), yet only two phylogenetic groups – Sativum and

Longicuspis – were distinguished in the collection examined in the present study.

Originally from the Mediterranean basin, selections of the Sativum group were

adopted by growers worldwide, and thus now form the major element of the global

garlic trade. The 76% representation of the Sativum group in the collection from

Central Asia indicates the rapidly growing dominance of garlic varieties of the

Sativum group from neighbouring China – the world’s most important producer and

exporter of garlic (FAO 2001). The smaller Longicuspis group, originated in Central

Asia, is considered as a primitive and more diverse group than Sativum (Maaß and

Klaas 1995). The Longicuspis gene pool is less known outside Central Asia, and it

may contain genes of interest for future use in genetic studies, as well as for plant

improvement programmes. In Central Asia, unique Longicuspis accessions are still

maintained in backyard gardens and by small farmers. However, because of the

inflow of cheaper garlic from China, these local landraces are being abandoned at

Figure 3. Classification of garlic accessions collected in Central Asia in 2000 according to AFLP

fingerprinting.
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an alarming rate, and the world richest treasure of garlic diversity is being lost –

forever. Immediate action should be taken to collect, protect and evaluate the

remains of the genetic diversity of this taxon before it is completely lost.

Evaluation of the garlic collection for vegetative and generative traits

In Israel, phenological studies of 120 garlic accessions have revealed four sub-

populations: (a) non-bolters; (b) incomplete bolters, producing short scapes with

aborted inflorescence; (c) bolters that produce scapes and mainly topsets in the

inflorescence (T>F); and (d) bolters that produce scapes and mainly flowers in the

inflorescence (F> T).

In 2000=2001, five accessions produced neither scapes nor bulbs under the Israeli

environmental conditions and died at the end of the growing season (Figure 4). Four

additional accessions were lost during post harvest storage. During the 2 years of

evaluation in Israel, the distribution of blooming performance within the collection

was rather stable (Figure 4). Most accessions were characterised as incomplete

bolters (n¼ 68 and 56 in 2000=2001 and 2001=2002, respectively). In the second

season the number of bolters with prolific production of topsets increased from 20

in 2000=2001 to 30 in 2001=2002. All accessions with fertile flowers maintained

their blooming habit in the second season (n¼ 27 of 120 and 25 of 111 accessions

Figure 4. Subdivision of the garlic collection from Central Asia according to the blooming habit in

Israel in 2000=2001 and 2001=2002. Group separation was based on scape elongation and on in-

florescence morphology, as follows: bolters producing mainly flowers; bolters producing mainly topsets;

incomplete bolters; non-bolters; died during post-harvest storage.
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in 2000=2001 and 2001=2002, respectively), thus indicating the dominance of the

genetic control on flowering in garlic.

Leaf number prior to the transition from the vegetative to the reproductive state

was significantly higher in bolters with fertile flowers than in the other plants, yet

the bulbs of the former were smaller and contained fewer cloves in the outer whorl

than the latter (Table 1). In bolting plants (Figure 5a), the formation of flowers and

topsets was almost complete when the stalks reached about 30 cm in length, and

spathe break occurred when the scapes were 35–50 cm long. At this point, the

differentiated flowers were visible to the naked eye. In the 20 bolting accessions, in

which inflorescences were characterised as T>F, developing topsets intermingled

with and physically strangled the young flower buds, thus causing their degen-

eration (Figure 5b). In 27 accessions, umbels were almost topset-free (Figure 5c).

Most of the flowers in these inflorescences produced viable pollen and receptive

stigmas, and seed setting was evident (Figure 5d,e). Seed viability was confirmed

using the tetrazolium chloride staining test. Most plants produced between 100 and

500 seed per umbel without the removal of topsets (Figure 5 f,g).

In The Netherlands, most accessions were characterised as bolters with high

ratios of topsets to flowers (T>F) (data not shown), thus emphasising the effect of

environment on floral expression (Kamenetsky et al. 2004).

In garlic, flower differentiation occurs in plants exposed to short photoperiod and

low temperatures (Kamenetsky et al. 2004), a set of environmental conditions

common in the main growing season in Israel, which is the winter. However, con-

ditions in The Netherlands, where plants are grown during summer under a long

photoperiod, are not conducive to flowering of garlic. This accounts for the main

differences in performance of the same genotypes in Israel and in The Netherlands,

respectively.

We have tested the relationship between phylogenetic affiliation as determined

by AFLP fingerprinting, bolting ability and flower development (Figure 6). Most

accessions in the Sativum group were characterised as incomplete bolters (Figure

6a), yet 19 out of 86 produced scapes and umbels. Incomplete bolters were not

found among two Longicuspis subgroups, and all plants of the subgroup A pro-

duced only inflorescence with viable flowers (Figure 6b), whereas half of the ac-

cessions in subgroup B were categorised as non-bolters under Israeli conditions

Table 1. Phenotypic expression of garlic accessions collected in Central Asia in 2000, and grown in

Israel in 2000=2001. Means followed by the same letter do not differ at 5% significance.

Blooming habit Number of

accessions

Leaf number

prior to bolting

Bulb diameter (cm) Number of cloves

in the outer whorl

Incomplete bolters 68 10.4� 0.1a 5.7� 0.1a 9.4� 0.1a

Bolters, producing

mainly topsets

20 10.6� 0.3a 5.7� 0.2a 9.2� 0.2ab

Bolters, producing

mainly flowers

27 14.1� 0.2b 5.1� 0.1b 8.8� 0.2b
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(Figure 6c). We thus conclude that the unique AFLP primer-enzyme combination

may be used for mass selection of garlic with flowering ability.

Assessment of organo-S compounds

The contents of five organo-S compounds were analysed in bulbs of 15 accessions

grown in The Netherlands in 2001=2002. Six of these accessions belonged to the

Sativum group and nine to the Longicuspis group. The results of a principal

component analysis (PCA) demonstrated a clear distinction in organo-S contents

between the two phylogenetic groups (Figure 7). The first two PCA axes described

84% of the total variance, thus indicating that these two axes represent the majority

of the variation for the analysed organo-S compounds in the garlic germplasm.

Figure 5. Inflorescence and seed development in bolting garlic of the Longicuspis group in Israel.
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The quantification of five organo-S compounds: alliin, isoalliin [details in

Materials and methods], allicin, GLUALCS, and isoGLUALCS from 15 garlic ac-

cessions reconfirmed the separation of our collection into two distinct phylogenetic

Figure 7. Principal component analysis based on the variation of five organo-S compounds for 15 garlic

accessions. Bulbs were collected in Central Asia in 2000 and grown in The Netherlands in 2001=2002.

Measurements were made in September, on mature, freshly harvested bulbs of the Sativum (S), and

Longicuspis A (L=A) and Longicuspis B (L=B) subgroups.

Figure 6. Distribution of garlic accessions with different blooming performance within phylogenetic

groups, as delimited by AFLP fingerprinting. Separation was made into non-bolters, incomplete bolters,

bolters producing mainly topsets (T>F) and bolters producing mainly flowers (F>T). Plant material

was collected in Central Asia in 2000 and grown in Israel.
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groups (Table 2). The two phylogenetic groups Sativum and Longicuspis differed

significantly in their contents of organo-S compounds. Bulbs of the former group

had smaller amounts of alliin and of the dipeptides GLUALCS and IsoGLUALCS,

and higher concentrations of isoalliin and allicin than those of the Longicuspis A

and B subgroups. The major differences between the phylogenetic groups were

determined mainly by the differences in the dipeptide and alliin contents.

Previous methods used for comparison of organo-S compounds in garlic referred

to only a single component, mainly alliin (Mochizuki et al. 1989; Kubec et al.

1999). In the present study, however, we employed a novel HPLC system (Arnault

et al. 2003) which allows simultaneous measurements of all the organo-S com-

pounds in the biosynthesis chain, from the original dipeptides to the final flavour-

volatile products. This method thus provides a detailed and complete account of the

organo-S compounds throughout the metabolic system, and can be used in studying

genetic and=or environmental effects on S-metabolism in plant tissues.

Effect of environmental conditions on organo-S content in garlic accessions

Compositions of organo-S compounds were compared in five accessions grown in

parallel in Israel and in The Netherlands during two seasons (Table 3). These results

Table 2. Quantification of five organo-S compounds in 15 garlic accessions and their separation into the

Sativum and Longicuspis phylogenetic groups. Plant samples from Central Asia were grown in The

Netherlands in 2001=2002. Partition into phylogenetic groups was based on AFLP fingerprinting (Figure

3). Separation of organo-S compounds in mature freshly harvested bulbs and quantification (nmol=mg

fresh weight) were done in September–October 2002 by means of HPLC-UV. Statistical analysis is based

on Nested ANOVA, followed by Tukey’s HSD test. Means followed by similar letters do not differ at 5%

significance.

Phylogenetic grouping Alliin Isoalliin GLUALCS IsoGLUALCS Allicin

Sativum group (n¼ 6) 40.5� 2.38a 1.6� 0.36a 6.7� 0.24a 15.0� 0.57a 9.6� 0.74a

Longicuspis

subgroup A (n¼ 4)

48.4� 3.60ab 0.3� 0.17b 15.3� 0.96b 19.8� 1.67b 7.1� 0.33b

Longicuspis

subgroup B (n¼ 5)

54.9� 2.44b 0.6� 0.09b 9.8� 0.41c 18.3� 0.58b 8.5� 0.54ab

Table 3. Environmental effects on the content of alliin, isoalliin, GLUALCS, isoGLUALCS and allicin

in five garlic accessions. Bulbs from the Central Asia collection were grown in parallel in Israel and The

Netherlands in 2001=2002. Assays for organo-S compounds and quantification (nmol=mg fresh weight)

were made in mature bulbs four weeks after harvest, in July–September 2002.

Location Alliin Isoalliin GLUALCS IsoGLUALCS Allicin

The Netherlands 40.5� 2.75 1.7� 0.44 6.8� 0.28 15.0� 0.66 9.7� 0.86

Israel 42.3� 2.26 0.7� 0.16 20.7� 1.60 22.3� 0.67 19.6� 0.95
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indicate the importance of the environmental conditions on the secondary metab-

olism in garlic. Marked differences were found in allicin, GLUALCS, and

isoGLUALCS contents, all of which were higher in the Israel-grown bulbs, but

alliin contents were quite similar, and the isoalliin content was slightly higher in the

bulbs grown in The Netherlands.

The dipeptides and allicin contents of the bulbs from Israel were 150–300% of

those in the same genotypes from The Netherlands. The alliin contents were similar

in all bulbs, and the isoalliin content was about twice as great in the Dutch-grown

accessions as in the ones from Israel. The data for individual accessions show a very

similar pattern (data not shown). Variability at the dipeptides level between acces-

sions and growth locations were obvious for all accessions. Unexpectedly, alliin level

was relatively consistent in all accessions from both growing sites, whereas allicin

contents were significantly higher in most accessions grown in Israel.

These results clearly show the major and consistent environmental effect on

organo-S compounds in garlic, which should be taken into account in quality

assessments of garlic genotypes, and probably of other alliaceous crops (Randle

and Lancaster 2002).

Conclusions

Cultivated garlic exhibits a wide variation in many vegetative and reproductive

traits. Taxonomic studies categorise the Longicuspis group from Central Asia as the

most primitive taxon within the species, and biochemical and molecular studies

suggest that this group still maintains the highest level of intraspecific variation. It

is, therefore, obvious that the Longicuspis group is the most important source of

genetic variation within the species and thus requires special attention to ensure the

utilisation of its unique traits in future improvement programmes (Pooler and

Simon 1993a,b; Maaß and Klaas 1995; Lallemand et al. 1997; Hong 1999; Hong

et al. 2000; Etoh and Simon 2002; Kamenetsky et al. 2003). In addition, Etoh

(1986), Jenderek (1998), Pooler and Simon (1993a,b), Kamenetsky et al. (2003)

and others reported on various levels of fertility in garlic plants from Central Asia.

Our present study (Table 1, Figure 6) indicates that these are most probably

members of the Longicuspis group, and that under appropriate environmental

conditions the expression of flowering and the production of viable pollen and of

receptive stigma are rather stable. In addition to yield and quality traits, and tol-

erance to biotic and abiotic stress conditions, this group seems to have conserved

the genes responsible for complete reproductive expression – a trait of the utmost

scientific and economic importance.

This precious gene-pool is, however, currently under severe threat of extinction,

due to the very rapid replacement of the traditional landraces with modern cultivars

of the Sativum group. An international effort in the very near future is imperative. It

should comprise a large-scale rescue operation involving collection in situ, to be

followed by an evaluation and preservation project, to halt the rapid and irreversible

decline of the Central Asia pool of garlic landraces.
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