102 research outputs found

    Bio-economic system-dynamics modelling to investigate strategic management options in New Zealand sheep farming enterprises : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Farm Management, School of Agriculture and Environment, Massey University, Manawatu, New Zealand

    Get PDF
    The average and range of production and profit levels achieved in New Zealand sheep farming enterprises indicate potential for improvement across many farms. Ewe wastage, use of terminal sires, and breed transition to produce higher value wool are issues currently pertinent to the profitability of farms on New Zealand North Island Hill Country with dual-purpose breeding ewe flocks. A bio-economic system-dynamics sheep farm model was identified as appropriate to model these profitability scenarios where changes in ewe flock structure were integral. The objectives of the current research were: to develop the model; validate output through examining ewe flock wastage (premature ewe losses) rates; and use the model to investigate use of terminal (meat breed) sires to increase income from lamb sales, and a gradual flock breed transition from purebred Romney to ¾ Merino ¼ Romney to increase income from wool sales. Component modules were flock dynamics (including sheep sales), sheep feed demand, feed supply from pasture, feed balance, wool production, and economics. Model output aligned with previously published industry data and was therefore considered a realistic representation of New Zealand North Island Hill Country sheep farming systems. Flock wastage rates ranging from 5% to 21% were studied, sheep enterprise cash operating surplus (COS) reduced by 1,069per11,069 per 1% increase in ewe wastage rate due to reductions in numbers of lambs for sale. The scope for terminal sire use in self-replacing flocks was limited by requirements for purebred ewe lambs. The maximum proportion of the breeding flock able to be bred with terminal sires ranged from 18% to 65% and was greater with higher lambing rate and lower replacement rate. Maximising terminal sire use increased COS by up to 101/ha compared with no use of terminal sires, due to higher survival and growth rates in crossbred lambs sold earlier for higher prices. Flock breed transition through crossbreeding a Romney flock with Merino sires demonstrated reductions in COS during the breed transition period and greater COS post-breed change. Net present value analysis showed whole farm COS with breed transition to be up to 26% greater than maintaining the purebred Romney flock. Breed transition scenarios with higher Merino-Romney crossbred ewe lamb selection intensity achieved lower average wool fibre diameter, with a longer breed transition period (i.e. ten years of transition) and greater economic benefit. Overall, the model was effective in investigating the selected scenarios and the results can be used to inform decision making of New Zealand farmers

    Enhanced bacterial cancer therapy delivering therapeutic RNA interference of c-Myc

    Get PDF
    BackgroundBacterial cancer therapy was first trialled in patients at the end of the nineteenth century. More recently, tumour-targeting bacteria have been harnessed to deliver plasmid-expressed therapeutic interfering RNA to a range of solid tumours. A major limitation to clinical translation of this is the short-term nature of RNA interference in vivo due to plasmid instability. To overcome this, we sought to develop tumour-targeting attenuated bacteria that stably express shRNA by virtue of integration of an expression cassette within the bacterial chromosome and demonstrate therapeutic efficacy in vitro and in vivo.ResultsThe attenuated tumour targeting Salmonella typhimurium SL7207 strain was modified to carry chromosomally integrated shRNA expression cassettes at the xylA locus. The colorectal cancer cell lines SW480, HCT116 and breast cancer cell line MCF7 were used to demonstrate the ability of these modified strains to perform intracellular infection and deliver effective RNA and protein knockdown of the target gene c-Myc. In vivo therapeutic efficacy was demonstrated using the Lgr5creERT2Apcflx/flx and BlgCreBrca2flx/flp53flx/flx orthotopic immunocompetent mouse models of colorectal and breast cancer, respectively. In vitro co-cultures of breast and colorectal cancer cell lines with modified SL7207 demonstrated a significant 50–95% (P < 0.01) reduction in RNA and protein expression with SL7207/c-Myc targeted strains. In vivo, following establishment of tumour tissue, a single intra-peritoneal administration of 1 × 106 CFU of SL7207/c-Myc was sufficient to permit tumour colonisation and significantly extend survival with no overt toxicity in control animals.ConclusionsIn summary we have demonstrated that tumour tropic bacteria can be modified to safely deliver therapeutic levels of gene knockdown. This technology has the potential to specifically target primary and secondary solid tumours with personalised therapeutic payloads, providing new multi-cancer detection and treatment options with minimal off-target effects. Further understanding of the tropism mechanisms and impact on host immunity and microbiome is required to progress to clinical translation

    Determining the Impact of Hogget Breeding Performance on Profitability under a Fixed Feed Supply Scenario in New Zealand

    Get PDF
    peer-reviewedHoggets (ewe lambs aged 4 to 16 months) can be bred from approximately 8 months of age for potentially increased flock production and profit, however most New Zealand hoggets are not presented for breeding and their reproductive success is highly variable. Bio-economic modelling was used to analyse flock productivity and profit in four sets of scenarios for ewe flocks with varying mature ewe (FWR) and hogget (HWR) weaning rate combinations. Firstly, hogget breeding was identified to become profitable when break-even HWRs of 26% and 28% were achieved for flocks with FWRs of 135% and 150%, respectively. Secondly, relatively smaller improvements in FWR were identified to increase profit to the same level as larger improvements in HWR. Thirdly, a high performing flock with FWR and HWR both ≥ the 90th percentile currently achieved commercially, was the most profitable flock modelled. Fourthly, a FWR was identified with which a farmer not wishing to breed hoggets could have the same profit as a farmer with a flock achieving current industry average FWR and HWR. Overall, the relative profit levels achieved by the modelled flocks suggest that more farmers should consider breeding their hoggets, though improvements in FWRs should be prioritised

    Tissue-Specific Education of Decidual NK Cells.

    Get PDF
    During human pregnancy, fetal trophoblast cells invade the decidua and remodel maternal spiral arteries to establish adequate nutrition during gestation. Tissue NK cells in the decidua (dNK) express inhibitory NK receptors (iNKR) that recognize allogeneic HLA-C molecules on trophoblast. Where this results in excessive dNK inhibition, the risk of pre-eclampsia or growth restriction is increased. However, the role of maternal, self-HLA-C in regulating dNK responsiveness is unknown. We investigated how the expression and function of five iNKR in dNK is influenced by maternal HLA-C. In dNK isolated from women who have HLA-C alleles that carry a C2 epitope, there is decreased expression frequency of the cognate receptor, KIR2DL1. In contrast, women with HLA-C alleles bearing a C1 epitope have increased frequency of the corresponding receptor, KIR2DL3. Maternal HLA-C had no significant effect on KIR2DL1 or KIR2DL3 in peripheral blood NK cells (pbNK). This resulted in a very different KIR repertoire for dNK capable of binding C1 or C2 epitopes compared with pbNK. We also show that, although maternal KIR2DL1 binding to C2 epitope educates dNK cells to acquire functional competence, the effects of other iNKR on dNK responsiveness are quite different from those in pbNK. This provides a basis for understanding how dNK responses to allogeneic trophoblast affect the outcome of pregnancy. Our findings suggest that the mechanisms that determine the repertoire of iNKR and the effect of self-MHC on NK education may differ in tissue NK cells compared with pbNK.This work was supported by Wellcome Trust Grants 090108/Z/09/Z and 085992/Z/08/Z, as well as by British Heart Foundation Grant PG/09/077/27964. P.R.K. was the recipient of a Wellcome Trust Ph.D. studentship.This is the final version of the article. It first appeared from the American Association of Immunologists via http://dx.doi.org/10.4049/​jimmunol.150122

    Killer cell immunoglobulin-like receptor (KIR) genes and their HLA-C ligands in a Ugandan population.

    Get PDF
    Killer cell immunoglobulin-like receptor (KIR) genes are expressed by natural killer cells and encoded by a family of genes exhibiting considerable haplotypic and allelic variation. HLA-C molecules, the dominant ligands for KIR, are present in all individuals and are discriminated by two KIR epitopes, C1 and C2. We studied the frequencies of KIR genes and HLA-C1 and C2 groups in a large cohort (n = 492) from Kampala, Uganda, East Africa and compared our findings with published data from other populations in sub-Saharan Africa (SSA) and several European populations. We find considerably more KIR diversity and weaker linkage disequilibrium in SSA compared to the European populations and describe several novel KIR genotypes. C1 and C2 frequencies were similar to other SSA populations with a higher frequency of the C2 epitope (54.9 %) compared to Europe (average 39.7 %). Analysis of this large cohort from Uganda in the context of other African populations reveals variations in KIR and HLA-C1 and C2 that are consistent with migrations within Africa and potential selection pressures on these genes. Our results will help understand how KIR/HLA-C interactions contribute to resistance to pathogens and reproductive success

    A KIR B centromeric region present in Africans but not Europeans protects pregnant women from pre-eclampsia.

    Get PDF
    In sub-Saharan Africans, maternal mortality is unacceptably high, with >400 deaths per 100,000 births compared with <10 deaths per 100,000 births in Europeans. One-third of the deaths are caused by pre-eclampsia, a syndrome arising from defective placentation. Controlling placentation are maternal natural killer (NK) cells that use killer-cell immunoglobulin-like receptor (KIR) to recognize the fetal HLA-C molecules on invading trophoblast. We analyzed genetic polymorphisms of maternal KIR and fetal HLA-C in 484 normal and 254 pre-eclamptic pregnancies at Mulago Hospital, Kampala, Uganda. The combination of maternal KIR AA genotypes and fetal HLA-C alleles encoding the C2 epitope associates with pre-eclampsia [P = 0.0318, odds ratio (OR) = 1.49]. The KIR genes associated with protection are located in centromeric KIR B regions that are unique to sub-Saharan African populations and contain the KIR2DS5 and KIR2DL1 genes (P = 0.0095, OR = 0.59). By contrast, telomeric KIR B genes protect Europeans against pre-eclampsia. Thus, different KIR B regions protect sub-Saharan Africans and Europeans from pre-eclampsia, whereas in both populations, the KIR AA genotype is a risk factor for the syndrome. These results emphasize the importance of undertaking genetic studies of pregnancy disorders in African populations with the potential to provide biological insights not available from studies restricted to European populations.This work was supported by the Wellcome Trust (090108/Z/09/Z, 085992/Z/08/Z, 089821/Z/09/Z), the British Heart Foundation (PG/ 09/077/27964), the Centre for Trophoblast Research at the University of Cambridge, a Wellcome Trust Uganda PhD Fellowship in Infection and Immunity held by Annettee Nakimuli, funded by a Wellcome Trust Strategic Award (084344), the US National Institutes of Health (AI017892), and the UK Medical Research Council (G0901682).This is the accepted manuscript of a paper published in PNAS (A Nakimuli, O Chazara, SE Hiby, L Farrell, S Tukwasibwe, J Jayaraman, JA Traherne, J Trowsdale, F Colucci, Emma Lougee, RW Vaughan, AM Elliott, J Byamugishaa, P Kaleebu, F Mirembe, N Nemat-Gorgani, P Parham, PJ Norman, A Moffett, PNAS 2015, 112, 845-850

    Reconsidering terms for mechanisms of polymer growth: The “Step-Growth” and “Chain-Growth” Dilemma

    Get PDF
    © 2022 The Authors. Published by Royal Society of Chemistry. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1039/D2PY00086EThe terms “step-growth polymerization” and “chain-growth polymerization” are used widely in both written and oral communications to describe the two main mechanisms of polymer growth. As members of the Subcommittee on Polymer Terminology (SPT) in the Polymer Division of the International Union of Pure and Applied Chemistry (IUPAC), we are concerned that these terms are confusing because they do not describe the fundamental differences in the growth of polymers by these methods. For example, both polymerization methods are comprised of a series of steps, and both produce polymer chains. In an effort to recommend comprehensive terms, a 1994 IUPAC Recommendation from the then version of SPT suggested polycondensation and polyaddition as terms for the two variants of “step-growth polymerization”, and similarly chain polymerization and condensative chain polymerization for two variants of “chain-growth polymerization.” However, these terms also have shortcomings. Adding to the confusion, we have identified a wide variety of other terms that are used in textbooks for describing these basic methods of synthesizing polymers from monomers. Beyond these issues with “step-growth” and “chain-growth,” synthesis of polymers one monomer unit at a time presents a related dilemma in that this synthetic strategy is wholly encompassed by neither of the traditional growth mechanisms. One component of the mission of IUPAC is to develop tools for the clear communication of chemical knowledge around the world, of which recommending definitions for terms is an important element. Here we do not endorse specific terms or recommend new ones; instead, we aim to convey our concerns with the basic terms typically used for classifying methods of polymer synthesis, and in this context we welcome dialogue from the broader polymer community in a bid to resolve these issues.We acknowledge IUPAC for support of this work through project 2019-027-1-400. We thank the members of SPT for helpful discussions and critical feedback in the preparation of this manuscript

    Enhanced bacterial cancer therapy delivering therapeutic RNA interference of c-Myc

    Get PDF
    Bacterial cancer therapy was first trialled in patients at the end of the nineteenth century. More recently, tumour-targeting bacteria have been harnessed to deliver plasmid-expressed therapeutic interfering RNA to a range of solid tumours. A major limitation to clinical translation of this is the short-term nature of RNA interference in vivo due to plasmid instability. To overcome this, we sought to develop tumour-targeting attenuated bacteria that stably express shRNA by virtue of integration of an expression cassette within the bacterial chromosome and demonstrate therapeutic efficacy in vitro and in vivo. Results The attenuated tumour targeting Salmonella typhimurium SL7207 strain was modified to carry chromosomally integrated shRNA expression cassettes at the xylA locus. The colorectal cancer cell lines SW480, HCT116 and breast cancer cell line MCF7 were used to demonstrate the ability of these modified strains to perform intracellular infection and deliver effective RNA and protein knockdown of the target gene c-Myc. In vivo therapeutic efficacy was demonstrated using the Lgr5creERT2Apcflx/flx and BlgCreBrca2flx/flp53flx/flx orthotopic immunocompetent mouse models of colorectal and breast cancer, respectively. In vitro co-cultures of breast and colorectal cancer cell lines with modified SL7207 demonstrated a significant 50–95% (P < 0.01) reduction in RNA and protein expression with SL7207/c-Myc targeted strains. In vivo, following establishment of tumour tissue, a single intra-peritoneal administration of 1 × 106 CFU of SL7207/c-Myc was sufficient to permit tumour colonisation and significantly extend survival with no overt toxicity in control animals. Conclusions In summary we have demonstrated that tumour tropic bacteria can be modified to safely deliver therapeutic levels of gene knockdown. This technology has the potential to specifically target primary and secondary solid tumours with personalised therapeutic payloads, providing new multi-cancer detection and treatment options with minimal off-target effects. Further understanding of the tropism mechanisms and impact on host immunity and microbiome is required to progress to clinical translation
    corecore