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In Sub-Saharan Africans, maternal mortality is unacceptably high
with >400 deaths/100,000 births compared to <10/100,000 in Eu-
ropeans. One third of the deaths are caused by pre-eclampsia,
a syndrome arising from defective placentation. Controlling pla-
centation are maternal natural killer cells that use killer-cell
immunoglobulin-like receptors (KIR) to recognize the fetal HLA-C
molecules on invading trophoblast. We analysed genetic polymor-
phisms of maternal KIR and fetal HLA-C for 484 normal and 254 pre-
eclamptic pregnancies at Mulago Hospital, Kampala, Uganda. The
combination of maternal KIR AA and fetal HLA-C2 associates with
pre-eclampsia (P=0.0318, OR 1.49). The KIR genes associated with
protection are located in centromeric KIR B regions that are unique
to Sub-Saharan African populations and contain the KIR2DS5 and
KIR2DL1 genes (P=0.0095, OR 0.59). By contrast, telomeric KIR B
genes protect Europeans against pre-eclampsia. Thus, different
KIR B regions protect Sub-Saharan Africans and Europeans from
pre-eclampsia, whereas in both populations the KIR AA genotype
is a risk factor for the syndrome. These results emphasize the
importance of undertaking genetic studies of pregnancy disorders
in African populations with the potential to provide biological
insights not available from studies restricted to European popu-
lations.
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Introduction
Although pre-eclampsia presents clinically with a diverse array of
systemic symptoms, the underlying disease–causing mechanism
starts with placentation when trophoblast cells invade the de-
cidua. Here they transform the uterine spiral arteries into large
vessels that form the feto-placental supply line (1, 2). In pre-
eclampsia and other pregnancy disorders (fetal growth restriction
(FGR), stillbirth, recurrent miscarriage), known collectively as
the Great Obstetric Syndromes (GOS), trophoblast fails to invade
optimally (3). Pre-eclampsia and other GOS occur in all popu-
lations but women of African ancestry are significantly more at
risk and thus GOS are responsible for much of the high maternal
and fetal mortality rates seen in Sub-Saharan Africa (SSA) (4).
The genetic contribution to pre-eclampsia is supported by several
studies and involves both maternal genes and the paternal genes
inherited by the fetus (5, 6).

The wall of the uterus is the territorial boundary between
two genetically different individuals: the mother and the fetus.
The uterine mucosal immune system appears to define this
maternal/placental boundary. The decidua must control placen-
tation, because in its absence the trophoblast infiltrates to a

dangerous extent, causing the condition of placenta percreta
(7). The decidua contains an abundant population of special-
ized NK cells. These uterine NK cells (uNK) express Killer-
cell Immunoglobulin-like Receptors (KIR) that recognize tro-
phoblast HLA-C ligands (8, 9). Both KIR and HLA-C are ge-
netically variable, resulting in many possible combinations of
maternal KIR and fetal HLA-C ligands (10). The KIR region
is defined by two groups of haplotype: A and B. The KIR A
haplotype has seven KIR genes, all encoding inhibitory receptors
apart from KIR2DS4. In contrast, the KIR B haplotype contains a
variable number of additional KIR most of which encode activat-
ing receptors (11, 12). All HLA-C allotypes are KIR ligands and
can be divided into two groups, carrying either C1 or C2 epitopes,
that are distinguished by a dimorphism at position 80 and are
recognized by different KIR (13). Within a human population the
combination of KIR and HLA diversity distinguishes individuals.
Worldwide human populations exhibit considerable differences
and this is particularly true for Sub-Saharan African populations.
They exhibit less linkage disequilibrium between the KIR genes

Significance

Pre-eclampsia is especially common in African women, and is a
major cause of maternal death. The KIR genes we analyzed are
carried by Natural Killer cells, immune cells that populate the
uterus and are essential for successful pregnancy. KIR proteins
bind HLA ligands on the implanting placental trophoblast cells.
African and European women share similar risk associations
for pre-eclampsia, but protection is associated with different
KIR genes in the two populations. African women are pro-
tected by a combination of KIR B haplotype genes that is
present almost exclusively in Africans. This study emphasizes
the importance of studying diseases in Africans where the
KIR/HLA genetic system is at its most diverse and maternal
mortality rates are the highest in the world.
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Table 1. Frequency of maternal KIR genotypes and KIR gene carriers

Uganda Pre-eclampsia
cases (n=251) n (%)

Uganda Controls
(n=483) n (%)

P-value OR (CI) UK Pre-eclampsia
cases (n=729) n (%)*

UK Controls
(n=592) n
(%)*

P-value OR (CI)

KIR GENOTYPE
KIR AA 91 (36.3) 136 (28.2) 0.0256 1.45

(1.05-2.01)
266 (36.5) 163 (27.5) 0.0005 1.51

1.20-
1.91

KIR AB 157 (62.5) 336 (69.6) NS 456 (62.6) 424 (71.6)
KIR BB 3 (1.20) 11 (2.28) NS 7 (0.96) 5 (0.84)

KIR GENES
2DP1 247 (98.4) 474 (98.1) NS NA NA
2DL1 247 (98.4) 476 (98.6) NS 707 (97.0) 569 (96.1) NS
2DL2 132 (52.6) 293 (60.7) 0.0365 0.72

(0.53-0.98)
348 (47.7) 313 (52.9) NS

2DL3 222 (88.4) 414 (85.7) NS 662 (90.8) 530 (89.5) NS
2DL5 138 (55.0) 316 (65.4) 0.0061 0.65

(0.47-0.88)
330 (45.3) 330 (55.7) 0.0002 0.66

(0.53-
0.82)

3DL1 248 (98.8) 473 (97.9) NS 600 (95.5) 517 (94.3) NS
3DS1 30 (12.0) 57 (11.8) NS 211 (33.8) 242 (44.3) 0.0002 0.64

(0.51-
0.81)

2DS1 52 (20.7) 114 (23.6) NS 240 (32.9) 255 (43.1) 0.0002 0.65
(0.52-
0.81)

2DS2 118 (47.0) 262 (54.2) NS 349 (47.9) 317 (53.5) NS
2DS3 56 (22.3) 118 (24.4) NS 185 (25.4) 175 (29.6) NS
2DS4 244 (97.2) 462 (95.7) NS 703 (96.4) 560 (94.6) NS
2DS4 del 73 (29.1) 144 (29.9) NS 632 (89.9) 474 (84.8) NS
2DS4 wt 171 (68.1) 318 (65.8) NS 262 (37.3) 215 (38.5) NS
2DS5 94 (37.5) 243 (50.3) 0.0009§ 0.59

(0.43-0.81)
205 (28.1) 214 (36.1) 0.0023 0.69

(0.55-
0.87)

*Hiby et al. 2010
Fisher's exact test with mid-p adjustment
a number of individuals were not typed for this gene

§ P=0.0126 after Bonferroni correction
NA, not available; NS, not significant

Fig. 1. Frequency of the KIR AA genotype alone and in combination with the
fetal HLA-C carrier group in Uganda and in the UK.There was a significant
difference in the KIR AA genotype frequencies between controls (grey bar)
and pre-eclampsia cases (black bar) in both the Ugandan, *P=0.0256, OR
1.45, and the UK cohorts, ***P=0.0005, OR 1.51. The frequency of KIR AA
genotypes is shown when combined either with a fetus carrying a C2 epitope
or those lacking C2 and carrying only C1-bearing HLA-Callotypes. There is a
significant risk of pre-eclampsia when a KIR AA women has a fetus carrying
a C2 epitope for both cohorts; in Uganda *P=0.0318, OR 1.49, in the UK
*P=0.0267, OR 1.46.

than other populations (14-16), and the KIR genes have greater
allelic diversity (15, 16). A variety of diseases and clinical con-

ditions have been associated with combinations of HLA-C and
KIR genes. In previous case-control studies of pre-eclampsia in
pregnant European women we showed that when the fetus carries
a C2 epitope, maternal KIR AA genotypes are risk factors for
pre-eclampsia, whereas the KIR2DS1 gene of maternal KIR B
haplotypes is protective (8, 17). In the case-control study reported
here we test the hypothesis that these factors confer similar risk
and protection to pregnant Sub-Saharan African women.

Results
Clinical characteristics of the cohort. This case-control study of
pre-eclampsia involved 738 pregnant women at Mulago Hospital,
Kampala in Uganda. More than 90% of cases and controls were
Bantu, the largest ethnic group, with small numbers of Luo,
Nilo-Hamites and other ethnic groups. The ethnicity of the male
partners and the sex ratios of the singleton babies in all the groups
were similar (Table S1). HIV+ women were not excluded from
the analysis as there were similar numbers in both pre-eclamptic
and control pregnancies (∼5%) (Table S1) and similar results
were found even when HIV+ women were omitted (Table S2).
As expected, the gestational age at delivery and the birth weights
were significantly lower in the pre-eclamptic cases compared to
controls (P<0.001, Table S1, Figure S1).

Unlike European women, KIR B centromeric regions con-
taining KIR2DS5 protect Ugandan women from pre-eclampsia.
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Submission PDFFig. 2. Frequencies of the different genotypes carrying KIR2DS5 in controls
and pre-eclampsia cases. (A) All controls (grey bars) and pre-eclamptic cases
(black bars) were grouped according to whether they carried KIR2DS5. The
presence of KIR2DS5 protects women from pre-eclampsia. ***P=0.0009. OR
0.59. (Pc=0.0126 after Bonferroni correction); (B) Women were grouped
according to the location of KIR2DS5 on the KIR B haplotype, centromeric
= cB, telomeric = tB, contracted or other unusual genotypes. KIR2DS5 on cB
is significantly protective **P=0.0095, OR 0.59. (C) The carrier frequencies
of those KIR2DS5 alleles present on cB were compared between controls
and pre-eclamptic cases. KIR2DS5*005C are those women where KIR2DS5 is
located on cB. Only KIR2DS5*006 is significantly protective **P=0.0015, OR
0.3519

Table 2. Risk associated with the absence of KIR2DS5 for the
different maternal/fetal HLA-C combinations

Parameter
P-value*

OR (CI)

Effect of relative dose of maternal and
fetal HLA-C2 alleles
Fetus had fewer C2 alleles than the
mother

0.7085 1.087 (0.69-1.69)

Fetus had the same number of C2 alleles 0.1612 1.280 (0.91-1.80)
Fetus had more C2 alleles than the
mother

0.0130 1.724 (1.12-2.64)

Effect of origin of fetal HLA-C2 allele
Paternal origin 0.0203 1.795 (1.10-2.93)
Maternal origin 0.5222 1.162 (0.72-1.84)

*Fisher's exact test with mid-p adjustment

Maternal KIR AA genotype is increased in the pre-eclamptic
pregnancies (P=0.0256, OR 1.45)(Table 1), particularly when
combined with the presence of fetal HLA-C alleles encoding
the C2 epitope, similar to our findings in Europeans (P=0.0318,
OR 1.49)(Figure 1). We then analyzed which KIR B haplotype
genes are protective. Three KIR B genes, KIR2DL2, KIR2DL5
and KIR2DS5, are more frequent in controls than in women with
pre-eclampsia. Of these three, only KIR2DS5 is significantly pro-
tective for women with pre-eclampsia after Bonferroni correction
(P=0.0009, Pc=0.0126, OR 0.59)(Table 1)(Figure 2A) (Table 3).
In comparable studies on European women, protection was seen

with KIR2DS1 and not with KIR2DS5 as shown here for African
women (Table 1). Moreover, in the Ugandans, the telomeric B
(tB) genes KIR2DS1 and KIR3DS1 are at similar low frequency in
cases and controls (Table 1).

As KIR genes are in linkage disequilibrium, KIR2DS5 could
be itself protective or marking a nearby protective gene. KIR2DS5
can be found in both the KIR centromeric B (cB) and telomeric B
(tB) regions. To determine the location of KIR2DS5 in our cohort,
we grouped individual genotypes according to their combination
of centromeric and telomeric KIR regions, based on previously
described African KIR haplotypes (see Methods and Figure 3).
Genotypes characteristic of expanded or contracted regions were
also identified and shown to have similar frequencies in cases and
controls.

Next, allele-level KIR2DS5 typing was performed, which iden-
tified ten alleles that were assigned to cB or tB regions as de-
scribed in Methods (Figure 4). KIR2DS5*004, *006, *007, and
*010 are restricted to cB, whilst KIR2S5*002, *003, *008, *009 and
*011 are restricted to tB. KIR2DS5*005 is the most frequent allele
and the only one found in both cB and tB (Figure 4), pointing to
it being the progenitor of all other KIR2DS5 alleles. Our assign-
ments of KIR2DS5 alleles to cB or tB agree with those defined by
complete KIR haplotype sequences and analysis of African and
African-American families (15, 18, 19). With all this information,
we were able to determine the centromeric or telomeric location
of KIR2DS5 for all KIR2DS5-carrying individuals.

Comparison of the frequency of the centromeric and telom-
eric KIR2DS5 alleles in cases and controls shows that they differ
in the protection they provide against pre-eclampsia. KIR2DS5
is protective in Ugandan women when it is present in the cB
region (cB01 or cB03, P=0.0095, OR 0.59) (Figure 2B, Figure
3, Table S3). Furthermore, of all the cB KIR2DS5 alleles, only
KIR2DS5*006 is significantly more frequent in controls than in
pre-eclamptic pregnancies (P=0.0015, OR 0.35) (Figure 2C, Ta-
ble S4). The dominant allele, KIR2DS5*005, has similar frequen-
cies in both cases and controls even when we can unequivocally
assign its location to cB and thus appears neutral. Consistent
with the low frequency of KIR2DS1 and KIR3DS1 in Africans,
KIR2DS5 is less frequently present in tB than cB. When present
in tB it has no effect, being at similar frequencies in controls and
cases (Figure 2B, Table S3). Thus, the protective effect of KIR B
is not just the absence of KIR A genes but also the presence of
genes belonging to a particular subgroup of cB regions, cB01 or
cB03 (Figure 3).

In Ugandan women, like European women, pre-eclampsia
associates with maternal KIR AA genotype combined with fetal
expression of paternal HLA-C2. We further examined the effect
of different combinations of maternal KIR and fetal ligands, C1
and C2 epitopes of HLA-C allotypes. Considered alone, the C1
and C2 frequencies in mothers and babies do not significantly
differ between cases and controls (Table S5). Using an extended
Mantel-Haenszel test for linear trend, we find that KIR AB or BB
genotype mothers carrying a C1C1 homozygous fetus have the
least risk of pre-eclampsia, whereas a KIR AA mother carrying a
C2 fetus has greatest risk (P=0.0122) (Figure S2, Table S6). Other
genetic combinations have risks between these two extremes.

If the fetus has one more HLA-C allele encoding a C2 epitope
than the mother, then the fetus must have inherited this C2
from the father. In this situation, the risk of pre-eclampsia in the
absence of KIR2DS5 is increased (P=0.0130, OR 1.72) (Table
2). To explore this further we defined the parental origin of
the C2 for C1C2 heterozygous fetuses. When the single C2 is
paternally inherited the risk of pre-eclampsia associated with the
absence of KIR2DS5 is greater (P=0.0203, OR 1.80) than when
it is maternally inherited (NS, OR 1.16 CI 0.72–1.84) (Table 2).
Taken together, these findings show that there is an increased
risk of pre-eclampsia in women with a KIR AA genotype lacking
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Fig. 3. Component genes of centromeric and telomeric KIR haplotype segments in African and European populations.The red segments together form the
KIR A haplotype, all other combinations of centromeric and telomeric motifs form KIR B haplotypes. The gene content motifs are shown for the centromeric
(left) and the telomeric regions (right). The frequencies of the different KIR regions in representative African and European populations is also shown (15, 39).

Fig. 4. Carrier frequencies of the different KIR2DS5 alleles found in the
Ugandan population. cB alleles are in shades of red, tB alleles shades of blue,
KIR2DS5*005 (purple) is found in both cB and tB.

KIR2DS5 when the fetus has a HLA-C allele encoding a C2
epitope inherited from its father.

Recurrence of pre-eclampsia in Ugandan women is associ-
ated with maternal KIR AA genotype and fetal expression of
paternal C2. The risk of recurrence of pre-eclampsia is known
to be high (∼20%) (20, 21). In our cohort were 24 pre-eclamptic
women who had recurrence of a hypertensive disorder of preg-
nancy, a condition on the same spectrum as pre-eclampsia. The
45.8% frequency of the KIR AA genotype in these women with
recurrent pre-eclampsia was even higher than the frequencies of
36.3% in the full cohort and 28.2% in controls. Ten of the eleven
KIR AA pregnancies in this sub-cohort carried a C2 fetus.

Discussion

Our genetic study in an African population not only supports pre-
vious findings that certain combinations of maternal KIR and fetal
HLA-C variants are associated with pre-eclampsia but also re-
veals the benefits of studying multiple populations including those
most at risk of a disease. Pre-eclampsia occurs more commonly
in African women and the symptoms are of severe, early onset
disease associated with low birth weight and high mortality (4).
Our findings have relevance to other disorders of pregnancy as
unexplained stillbirth, fetal growth restriction and preterm labour
are more common women with African ancestry and share the
same underlying problem of defective placentation with reduced
maternal blood flow to the placenta (4).

There is considerably more genetic diversity of KIR genes
in Africans both at the level of KIR haplotypes and number of
alleles at individual KIR loci (10, 15, 16). Despite this complexity,
we find complete consistency with our studies of pre-eclampsia
in Europeans: the risk is associated with a maternal KIR AA
genotype combined with a paternally-derived HLA-C allotype
carrying a C2 epitope in the fetus (8, 17). Recurrent pre-eclampsia
frequently occurs in African women (24.6% in a recent Tanzanian
study) and the high frequency of KIR AA genotypes in these
women in our study is striking (45.8% compared to 28.2% in
controls)(21). The KIR always present on the KIR A haplotype
likely to confer this risk for is KIR2DL1, an inhibitory KIR with
strict specificity for C2 epitopes (22). Thus, in women with a KIR
AA genotype containing two copies of KIR2DL1, uNK will be
strongly inhibited when confronted by HLA-C2+ trophoblast.
There are at least 12 KIR2DL1 alleles located in cA region in
Africans compared to 1-5 in other populations (15). In the future
analysis of larger cohorts, including more women with recurrent
pre-eclampsia, should identify if there are particular KIR2DL1
alleles responsible.

One clear difference that might partially explain the increased
risk of pre-eclampsia in Africans is the higher frequency of C2-
bearing HLA-C allotypes across SSA compared with elsewhere
in the world (14). The probability of African women having a C2-
positive partner or fetus is 80% compared to 64% for European
women. Similarly the probability of African women having a
fetus carrying a paternal C2 epitope is 55%, compared to 40%
for European women (Table S4). Given the selective pressure
that pre-eclampsia imposes on a population, there must be other
scenarios where C2 epitopes are beneficial. HLA-C and KIR are
immune system genes with roles in outcome from viral infections
such as HCV and HIV (10, 23-25). In SSA C2 epitopes might be
advantageous in responding to a range of pathogens, including
malaria. Studies of how HLA-C and KIR variants affect responses
to infection in SSA are still limited, especially in the crucial period
from birth to adolescence.

We observed that tB regions containing KIR2DS1 provide
a protective effect for pre-eclampsia in Europeans (8). In con-
trast, we now show that in Ugandans KIR cB regions charac-
terized by KIR2DS5, KIR2DP1 and KIR2DL1 (cB01 and cB03)
are protective. The low carrier frequency of KIR2DS1 in SSA
(1.4%-27.8%) compared to Europe (42.5%) also suggests that
KIR2DS1 does not play an important role in pregnancy success
in Africans (14). One explanation for the different protective
effect is that KIR2DS5, an activating KIR that likely evolved
from a KIR specific for C2, does function like KIR2DS1 - al-
though there is no evidence to date that the C2 epitope is a
KIR2DS5 ligand (22). The single KIR2DS5 allele in Europeans,
KIR2DS5*002, is in tight LD with KIR2DS1 and located in the
tB region. Unlike Europeans though, KIR2DS5 is polymorphic in
Africans and African-Americans. We found 10 alleles in Ugan-
dans, consistent with previous reports from African Americans
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(IPD), located in both cB and tB, but most commonly found
in those cB regions that also contain KIR2DP1 and KIR2DL1
(26, 27). The dominant allele, KIR2DS5*005 is the only allele
found in both cB and tB and is probably ancestral; when in either
location it was similar in frequency between cases and controls.
Of the cB KIR2DS5 alleles, only KIR2DS5*006 is significantly
associated with protection from pre-eclampsia. KIR2DS5 can
be expressed by European pbNK but we have been unable to
demonstrate its expression on uNK using similar reagents (28-
30). The functional effects of KIR2DS5 diversity await further
investigation but certain KIR2DS5 allotypes do show different
expression levels in transfected cells, similar to findings for other
KIR variants (30). For example, allelic variation of KIR2DL1
affects expression levels at the cell surface, NK repertoire and
affinity of binding (22, 31, 32). Furthermore, although no binding
has been demonstrated of the European allele, KIR2DS5*002,
to any HLA ligand, KIR2DS5*006 might bind to C2 epitopes
common in Africans (C*04, C*02, C*17, C*18)(15).

Another possibility is that KIR2DS5 is in LD with other KIR
on the protective cB01 and cB03 regions, notably KIR2DL1. The
cB KIR2DL1 allele present in Europeans, KIR2DL1*004, gives
a weak inhibitory signal compared to the common cA allele,
KIR2DL1*003 (31). Thus, the protective effect of the cB01 and
cB03 regions could either be due to KIR2DS5 activation or
weaker KIR2DL1 inhibition, as both might counter-balance the
strong inhibition conferred from cA KIR2DL1 alleles. For both
KIR A and B haplotypes, the particular KIR2DS5 and KIR2DL1
alleles involved are therefore important, but to investigate this
will require much larger, clinically well-characterised cohorts.
Our method to infer KIR regions allows a fairly simple analysis of
KIR data from clinical cohorts in SSA compared to the complex
sequencing needed to define the exact haplotypes (15). Hence,
although this analysis does not unravel the complete complexity
of KIR variants found, it can point to the regions conferring risk
or protection. In this clinical context we have a clear pointer
that the cB01 and cB03 regions, containing KIR2DS5, KIR2DL1
and KIR2DP1, are providing protection from pre-eclampsia in
Ugandan women.

In this African cohort, as in Europeans, a paternal rather
than maternal origin of fetal C2 confers risk in women lacking
KIR2DS5 (8). Whether this effect is due to disparities between
individual maternal and paternal HLA-C2 allotypes (allogeneic)
and/or a dosage effect (more HLA-C alleles encoding C2 in the
fetus than in the mother when C2 is paternally derived) is unre-
solved (8). This will require high-resolution genotyping of C1C2
mothers who have C1C2 babies (where the dosage is identical) in
a large cohort (2000 cases and 4000 controls would be required).

The great diversity of KIR and HLA-C variants in SSA is
maintained by balancing selection (10). The two contrasting
functions of these immune system gene families in reproduction
and immune responses to infection mean certain variants will
be important at different stages of life in women, men, children
and adults and in geographical regions with a range of different
pathogens. We have previously argued that the selective pressures
from reproductive success and immune response to pathogens
are competing and have driven evolution of the KIR A and B
haplotypes in humans compared to other hominids (10). Our
combined studies of KIR/HLA-C variants in diverse European
and African populations now suggest that the unusual repro-
ductive strategies characteristic of modern humans compared
to other hominids could also be a cause of balancing selection.
The evolution of the large neonatal brain relative to a pelvis
adapted for bipedalism means birth weight must be kept between
two strictly defined limits. When babies are large (>95th centile)
there is a risk of cephalo-pelvic disproportion and subsequent
prolonged obstructed labour, birth asphyxia and post partum
haemorrhage. Furthermore, these outcomes are also much more

common in African women with associated features of pregnancy
that favour smaller babies: earlier birth - the gestational age is
reduced to 38 weeks, the head engages late into the pelvis and
the baby matures earlier than in non-Africans (4). Thus, there is
not only high mortality in mother and babies from pre-eclampsia
(associated with low birth weight and still birth), but also at the
other end of the normal birth weight spectrum. Both mothers
and their babies benefit if the latter have intermediate birth
weights and the two extremes of very low and high birth weight
are selected against. The balance between these two extremes is
partially determined at placentation when uNK allow trophoblast
cells to access sufficient maternal oxygen and nutrients without
starving the baby (defective trophoblast invasion) or risking uter-
ine rupture (excessive trophoblast invasion) (3). In an African
population, because of the greater risk of cephalo-pelvic dispro-
portion (4), there is even greater selection for reduced fetal size
with associated pre-eclampsia - this is consistent with the higher
frequency of maternal KIR AA/paternal C2 combinations in SSA.

In Europeans, opposing KIR/HLA-C combinations are asso-
ciated with the extremes of birth weight: a paternal C2 epitope
is associated with both extremes, but in pre-eclampsia and low
birth weight (<5th centile) the risk is with maternal KIR AA
genotypes, whilst in high birth weight the association is with
maternal KIR2DS1 (33). Studies on how these genetic findings
are translated in uNK functional differences are still limited but
we found that when KIR2DS1+ uNK (isolated from UK patients)
are activated by target cells expressing HLA-C2, there is increased
production of soluble factors (eg GM-CSF) that enhance tro-
phoblast invasion (34).

Thus, there is a balance between the KIR A and KIR B
haplotypes in both populations but they differ in the regions of
the KIR B haplotype that correlate with protection from pre-
eclampsia. tB regions and KIR2DS1 are infrequent in Africans
compared to Europeans but the opposite is true for cB regions
containing KIR2DS5. During the out-of Africa migrations it is
possible that only individuals with tB with KIR2DS1 moved away
from SSA. Introgression of KIR2DS1 from archaic humans is also
a possibility (35). Our previous findings do indicate that KIR2DS1
and KIR3DS1 (both on tB) are selected against in SSA (14).
Studying disorders of pregnancy in an African setting is important
and informative; the high rates of pre-eclampsia as well as other
major disorders of pregnancy including obstructed labour and
stillbirth and the greater genetic diversity of KIR in SSA mean
unravelling the role of the complex KIR and HLA systems will
provide valuable genetic information to predict women who are
at risk of a range of pregnancy disorders.

Materials and Methods
Ethics statement. Approval to conduct the study was given by the Higher
Degrees Research and Ethics Committee of Makerere University College of
Health Sciences and the Uganda National Council for Science and Technology
(UNCST). The participants gave written informed consent to participate in the
study. Withdrawal from the study never jeopardized health care and this was
provided free to all women.

Study design. This study was conducted at Mulago National Referral
and Teaching Hospital, located in Kampala, which functions as a tertiary
referral center for Uganda. Mulago hospital is the busiest maternity hospital
in Sub-Saharan Africa, with over 30,000 deliveries a year. Genomic DNA was
obtained from maternal blood from unrelated healthy women (n=484) or
women with pre-eclampsia or eclampsia (n=254) between July 2009 and June
2011. Umbilical cord samples were obtained from the babies for genomic
DNA isolation. Pre-eclampsia was defined as hypertension of 140/90 mmHg
or more, on more than one occasion at least 4 hours apart plus proteinuria of
+2 or more by dipstick, both at 20 weeks or more of gestation. Eclampsia was
diagnosed when a patient with pre-eclampsia had generalized tonic-clonic
convulsions. Controls were women with a normal first pregnancy delivering
at term (≥38 weeks) who were normotensive with no proteinuria. Excluded
from controls were patients taking long term medication and patients
with other diseases including chronic hypertension and renal disease but
excluding HIV. Women who had received a blood transfusion within the last
3 months were also excluded. Cases and controls were consecutively recruited
from the same catchment area during the study period. Data was collected
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at the time of clinical examination of the participants using an interviewer-
administered questionnaire and additional information was obtained from
medical charts.

DNA isolation and genotyping. Maternal genomic DNA was isolated
from 5 ml of blood using the QIAamp DNA Maxi Blood Kit (Qiagen). Fetal
DNA was isolated from umbilical cord samples after overnight incubation
with Proteinase K (Roche), purification with a protein precipitation solution
(Qiagen) followed by ethanol precipitation. Twelve maternal KIR genes were
typed for presence or absence by PCR-SSP using two pairs of primers per
gene or allele as described previously (8, 14, 36). The KIR genes typed were
2DL1, 2DL2/3, 2DL5, 3DL1/S1, 2DP1, 2DS1, 2DS2, 2DS3, 2DS4 (including the
deletion), and 2DS5. All the samples were typed for KIR2DL1 and KIR2DP1
copy number and 28 selected samples were further investigated for addi-
tional KIR (2DL4, 3DP1, 3DL2, 3DL3) so that all 14 KIR genes were included
(37). Individual genotypes were defined according to their combination of
centromeric (cA and cB) and telomeric (tA and tB) KIR regions, based on
previously described African KIR haplotypes (14, 15, 18). We first discrim-
inated KIR A from KIR B regions on the basis of the presence/absence of
2DS2, 2DL2/3, 2DP1, 2DL1, 3DL1/S1, 2DS1 and 2DS4. There are common cB
regions in Africans (Figure 3) that were identified in individuals with a cB
region using information from the presence/absence of individual KIR genes
and the copy number of KIR2DL1 and KIR2DP1 (18). Typically, cB01 and cB03
have 2DP1, 2DL1, 2DL5 and 2DS5 (or 2DS3) whereas cB02 lacks these genes.
KIR2DS5 alleles were genotyped by pyrosequencing, targeting exons 5, 6,
and 7 (15). Then, by knowing which KIR2DS5 alleles are present in individuals
homozygous for either centromeric A (cA) or telomeric A (tA) regions, we

could assign each of the ten KIR2DS5 alleles to cB or tB (Figure 4). C1 and
C2 were defined in maternal and fetal samples based on the primers and
methods described previously (8, 36). HLA-C low resolution allelic typing was
performed using a PCR-SSP method consisting of 21 reaction wells adapted
from (38). Each well contained a final reaction volume of 10µl, consisting
of 5x Green GoTaq Flexi Buffer (Promega), 0.2mM dNTPs (ThermoFisher),
1.25mM MgCl2 (Promega), 0.4U GoTaq DNA polymerase (Promega), 134nM
63/64 control primer (Eurogentec) and approximately 45ng DNA. PCR prod-
ucts were run on a 1% agarose gel and visualized using a UV and ethidium
bromide.

Statistical analysis. Unless otherwise indicated, categorical data was
analysed using the chi-square and Fisher's exact test with two-tailed mid-
p adjustment and Student’s t-test for continuous data. A P-value of ≤ 0.05
was considered to be statistically significant. The magnitude of the effect
was estimated by odds ratios (OR) and their 95% confidence intervals (CI).
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Table S1 Clinical characteristics of the cohort 

Characteristics Pre-eclampsia 
cases 
n=254 
n (%) 

Controls 
n=484 
n (%) 

P-value* 

Women’s age (years) 
mean ± SD 24.8 ± 5.4 21.1 ± 2.8 < 0.001 
range (13.0-42.4) (16.0-31.4) 
Parity 
Primigravidae 132 (52.0) 484 (100) < 0.001 
Multiparous 122 (48.0) - 
Sex of baby 
Female 109 (46.0) 248 (51.2) NS 
Male 128 (54.0) 236 (48.8)
Gestation age at delivery (weeks) 
mean ± SD 37.2 ± 3.7 39.8 ± 1.5 < 0.001 
range (24-44) (38-45) 
Baby’s birth weight (kg)  
mean ± SD 2.6 ± 0.8 3.1 ± 0.4 < 0.001 
range (0.7-4.5) (2.0-4.5) 
Admission BP– systolic (mmHg) 
mean ± SD 163.8 ± 21.7 110.5 ± 7.1 < 0.001 
range (140-254) (90-135) 
Admission BP– diastolic (mmHg) 
mean ± SD 110.2 ± 14.8 67.2 ± 6.2 <0.001 
range (90-160) (60-85)
HIV status 
Negative 241(94.9) 461 (95.2) NS 
Positive 13 (5.1) 23 (4.7) 
*Fisher's exact test with mid-p adjustment 
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Table S2 Summary of the results for HIV negative individuals 

Parameter P-value* OR (CI) 

Maternal KIR AA 0.0167 1.50 (1.08-2.10) 
Maternal KIR AA and fetal HLA-C2+ 0.0318 1.49 (1.04-2.15) 

   
Presence of KIR2DL2 0.0179 0.68 (0.50-0.94) 
Presence of KIR2DL5 0.0047 0.63 (0.46-0.87) 
Presence of KIR2DS5 0.0009 0.58 (0.42-0.80) 

   
Fetus had more HLA-C2 alleles than the mother  0.0083 1.81 (1.17-2.79) 
Paternal origin of fetal HLA-C2 allele 0.0256 1.82 (1.08-3.07) 

   
Presence of KIR2DS5 centromeric 0.0089 0.58 (0.38-0.88) 
Presence of KIR2DS5*006 0.0034 0.38 (0.18-0.74) 
   
Trend of maternal KIR and fetal HLA-C combinations 0.0086† NA 

Pre-eclampsia cases (n=238), controls (n=460), all HIV negative   
*Fisher's exact test with mid-p adjustment unless otherwise 
stated   
†Extended Mantel-Haenszel chi square for linear trend 

  
NA not available 
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Table S3 Frequency of the different KIR2DS5 genotypes 
 
  Pre-

eclampsia 
cases 

(n=251)  
n (%) 

Controls 
(n=483)  

n (%) 

P-
value* 

OR (CI)

Absence of KIR2DS5 157 (62.5) 240 (49.7) 0.0009 1.69 (1.24-2.31) 
KIR2DS5 centromeric 38 (15.1) 112 (23.2) 0.0095 0.59 (0.39-0.88) 
KIR2DS5 telomeric 20 (8) 39 (8.1) NS 
KIR2DS5 on a contracted KIR haplotype 22 (8.8) 50 (10.4) NS 
KIR2DS5 on other KIR genotypes 14 (5.6) 42 (8.7) NS   *Fisher's exact test with mid-p adjustment    
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Table S4 Frequency of the different KIR2DS5 alleles 

 
KIR2DS5 

allele 
location 

KIR2DS5 allele Pre-eclampsia 
cases (N=251) 

 n (%) 

Controls 
(N=483) 

n (%) 

P-value* OR (CI) 

cB *004 22 (8.8) 39 (8.1) NS 
 cB *00502 2 (0.8) 3 (0.6) NS  

cB *006 10 (4) 51 (10.6) 0.0015  0.35 (0.17-0.69) 
cB *007 13 (5.2) 23 (4.8) NS 

 cB *010 3 (1.2) 17 (3.5) NS  
      

cB and tB  *005 26 (10.4) 66 (13.7) NS  
cB  *005C 14 (5.6) 33 (6.8) NS 

 tB  *005T 6 (2.4) 14 (2.9) NS 
 n.a.  *005 others 6 (2.4) 19 (3.9) NS  

      

tB *002 28 (11.2) 55 (11.4) NS  
tB *003 7 (2.8) 17 (3.5) NS  
tB *008 2 (0.8) 2 (0.4) NS  
tB *009 12 (4.8) 25 (5.2) NS  
tB *011 1 (0.4) 4 (0.8) NS  

      *Fisher's exact test with mid-p adjustment  
   P=0.0205 after Bonferroni correction 
   KIR2DS5*005 can be found in both the cB and tB region. The more detailed analysis is given when the 

assignment to each region is possible. 
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Table S5 Frequency of maternal and fetal HLA-C genotypes 

 

 
Mothers P-value Fetuses P-value 

  

Pre-eclampsia 
cases (n=251) 

Controls 
(n=483) 

  Pre-eclampsia 
cases (n=247) 

Controls 
(n=480)   

HLA-C 
genotype 

      HLA-C1C1 46 (18.3) 95 (19.7) NS 45 (18.2) 106 (22.1) NS 

HLA-C1C2 132 (52.6) 245 (50.7) NS 118 (47.8) 227 (47.3) NS 

HLA-C2C2 73 (29.1) 143 (29.6) NS 84 (34) 147 (30.6) NS 

       HLA-C group frequency 
     HLA-C1 224 (44.6) 435 (45) NS 208 (42.1) 439 (45.7) NS 

HLA-C2 278 (55.4) 531 (55) NS 286 (57.9) 521 (54.3)  NS 
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Table S6 Frequency of maternal KIR and fetal HLA-C combinations 

Parameter Pre-
eclampsia 

cases 
(n=246)  

n (%) 

Controls 
(n=478)  

n (%) 

P-
value* 

Risk 
compared 
to baseline 

Trend 0.0122 
  
KIR AA mother  Fetal HLA-C2C2 29 (11.8) 39 (8.2) 1.847Fetal HLA-C1C2 46 (18.7) 67 (14) 1.705Fetal HLA-C1C1 14 (5.7) 29 (6.1) 1.199
KIR AB or BB mother Fetal HLA-C2C2 54 (22) 106 (22.2) 1.265Fetal HLA-C1C2 72 (29.3) 160 (33.5) 1.118Fetal HLA-C1C1 31 (12.6) 77 (16.1)   1*Extended Mantel-Haenszel chi square for linear trend   



Supplementary Figures.  

Fig. S1. Birth weight (g) distributions of babies from control (n=484)(dotted 

line) and pre-eclamptic (solid line)(n=229) pregnancies. The birth weight (g) 

is shown on the x axis and the frequency (%) on the y axis." 

Fig. S2. Linear trends in the frequencies of the maternal KIR and fetal HLA-

C genotype combinations depicted in Table S5. Mothers were grouped as 

having either KIR AA or KIR AB/BB genotypes. Fetal HLA-C genotypes were 

defined as HLA-C2C2, HLA-C1C2 or HLA-C1C1. In a comparison of pre-

eclamptic and control pregnancies, there is a significant linear trend in 

frequencies. The most risk of pre-eclampsia is in pregnancies with a KIR AA 

mother and a HLA-C2C2 or HLA-C1C2 fetus. The least risk is with KIR AB/BB 

mothers with HLA-C1C2 or HLA-C1C1 fetuses. The data was analysed using 

an extended Mantel-Haenszel test for linear trend (p=0.0122). 
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