465 research outputs found

    X-ray crystallographic and theoretical studies of an anticonvulsant enaminone:methyl 4-(4'-bromophenyl)amino-6-methyl-2-oxocyclohex-3-en-1-oate

    Get PDF
    Objective: The aims of this study were to establish the structure of the potent anticonvulsant enaminone methyl 4-(4â€Č-bromophenyl)amino-6-methyl-2- oxocyclohex-3-en-1-oate (E139), and to determine the energetically preferred conformation of the molecule, which is responsible for the biological activity. Materials and Methods: The structure of the molecule was determined by X-ray crystallography. Theoretical ab initio calculations with different basis sets were used to compare the energies of the different enantiomers and to other structurally related compounds. Results: The X-ray crystal structure revealed two independent molecules of E139, both with absolute configuration C11(S), C12(R), and their inverse. Ab initio calculations with the 6-31G, 3-21G and STO-3G basis sets confirmed that the C11(S), C12(R) enantiomer with both substituents equatorial had the lowest energy. Compared to relevant crystal structures, the geometry of the theoretical structures shows a longer C-N and shorter C=O distance with more cyclohexene ring puckering in the isolated molecule. Conclusion: Based on a pharmacophoric model it is suggested that the enaminone system HN-C=C-C=O and the 4-bromophenyl group in E139 are necessary to confer anticonvulsant property that could lead to the design of new and improved anticonvulsant agents. Copyright © 2003 S. Karger AG, Basel

    A learning approach to 3d object representation for classification

    Get PDF
    Abstract. In this paper we describe our 3D object signature for 3D object classification. The signature is based on a learning approach that finds salient points on a 3D object and represent these points in a 2D spatial map based on a longitude-latitude transformation. Experimental results show high classification rates on both pose-normalized and rotated objects and include a study on classification accuracy as a function of number of rotations in the training set

    Natural and anthropogenic lead in sediments of the Rotorua lakes, New Zealand

    Get PDF
    Global atmospheric sources of lead have increased more than 100-fold over the past century as a result of deforestation, coal combustion, ore smelting and leaded petroleum. Lead compounds generally accumulate in depositional areas across the globe where, due to low solubility and relative freedom from microbial degradation, the history of their inputs is preserved. In lakes there is rapid deposition and often little bioturbation of lead, resulting in an excellent depositional history of changes in both natural and anthropogenic sources. The objective of this study was to use sediments from a regionally bounded set of lakes to provide an indication of the rates of environmental inputs of lead whilst taking into account differences of trophic state and lead exposure between lakes. Intact sediment gravity cores were collected from 13 Rotorua lakes in North Island of New Zealand between March 2006 and January 2007. Cores penetrated sediments to a depth of 16–30 cm and contained volcanic tephra from the 1886 AD Tarawera eruption. The upper depth of the Tarawera tephra enabled prescription of a date for the associated depth in the core (120 years). Each core showed a sub-surface peak in lead concentration above the Tarawera tephra which was contemporaneous with the peak use of lead alkyl as a petroleum additive in New Zealand. An 8 m piston core was taken in the largest of the lakes, Lake Rotorua, in March 2007. The lake is antipodal to the pre-industrial sources of atmospheric lead but still shows increasing lead concentrations from <2 up to 3.5 ÎŒg g−1 between the Whakatane eruption (5530 ± 60 cal. yr BP) and the Tarawera eruption. Peaks in lead concentration in Lake Rotorua are associated with volcanic tephras, but are small compared with those arising from recent anthropogenic-derived lead deposition. Our results show that diagenetic processes associated with iron, manganese and sulfate oxidation-reduction, and sulfide precipitation, act to smooth distributions of lead from anthropogenic sources in the lake sediments. The extent of this smoothing can be related to changes in sulfate availability and reduction in sulfide driven by differences in trophic status amongst the lakes. Greatest lead mobilisation occurs in mesotrophic lakes during seasonal anoxia as iron and manganese are released to the porewater, allowing upward migration of lead towards the sediment–water interface. This lead mobilisation can only occur if sulfides are not present. The sub-surface peak in lead concentrations in lake sediments ascribed to lead alkyl in petroleum persists despite the diagenetic processes acting to disperse lead within the sediments and into the overlying water

    Efficient Recognition of Partially Visible Objects Using a Logarithmic Complexity Matching Technique

    Full text link
    An important task in computer vision is the recognition of partially visible two-dimensional objects in a gray scale image. Recent works addressing this problem have attempted to match spatially local features from the image to features generated by models of the objects. However, many algo rithms are considerably less efficient than they might be, typ ically being O(IN) or worse, where I is the number offeatures in the image and N is the number of features in the model set. This is invariably due to the feature-matching portion of the algorithm. In this paper we discuss an algorithm that significantly improves the efficiency offeature matching. In addition, we show experimentally that our recognition algo rithm is accurate and robust. Our algorithm uses the local shape of contour segments near critical points, represented in slope angle-arclength space (Ξ-s space), as fundamental fea ture vectors. These feature vectors are further processed by projecting them onto a subspace in Ξ-s space that is obtained by applying the Karhunen-LoÚve expansion to all such fea tures in the set of models, yielding the final feature vectors. This allows the data needed to store the features to be re duced, while retaining nearly all information important for recognition. The heart of the algorithm is a technique for performing matching between the observed image features and the precomputed model features, which reduces the runtime complexity from O(IN) to O(I log I + I log N), where I and N are as above. The matching is performed using a tree data structure, called a kD tree, which enables multidi mensional searches to be performed in O(log) time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66975/2/10.1177_027836498900800608.pd

    Fluid transport at low Reynolds number with magnetically actuated artificial cilia

    Full text link
    By numerical modeling we investigate fluid transport in low-Reynolds-number flow achieved with a special elastic filament or artifical cilium attached to a planar surface. The filament is made of superparamagnetic particles linked together by DNA double strands. An external magnetic field induces dipolar interactions between the beads of the filament which provides a convenient way of actuating the cilium in a well-controlled manner. The filament has recently been used to successfully construct the first artificial micro-swimmer [R. Dreyfus at al., Nature 437, 862 (2005)]. In our numerical study we introduce a measure, which we call pumping performance, to quantify the fluid transport induced by the magnetically actuated cilium and identify an optimum stroke pattern of the filament. It consists of a slow transport stroke and a fast recovery stroke. Our detailed parameter study also reveals that for sufficiently large magnetic fields the artificial cilium is mainly governed by the Mason number that compares frictional to magnetic forces. Initial studies on multi-cilia systems show that the pumping performance is very sensitive to the imposed phase lag between neighboring cilia, i.e., to the details of the initiated metachronal wave.Comment: 12 pages, 10 figures. To appear in EPJE, available online at http://dx.doi.org/10.1140/epje/i2008-10388-

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore