
1 

 

 

Natural and anthropogenic lead in sediments of the Rotorua 

lakes, New Zealand 

 

L. K. Pearson
a
, C. H. Hendy

a
, D. P. Hamilton

b
 and R.C. Pickett

a,1 

 

a
 Chemistry Department, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.  

b
 Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New 

Zealand.  

1
 Current address: Tonkin and Taylor Ltd, 105 Carlton Gore Road, Auckland 1023, New Zealand. 

 

Corresponding Author 
Lisa Pearson 

Postal address: Chemistry Department, University of Waikato, Private Bag 3105, Hamilton 3240, New 

Zealand 

Email address: lkp6@waikato.ac.nz 

Telephone: +64 07 856 5074 

Fax: +64 07 383 4219 

 

Abstract 

Global atmospheric sources of lead have increased more than 100-fold over the past 

century as a result of deforestation, coal combustion, ore smelting and leaded 

petroleum. Lead compounds generally accumulate in depositional areas across the globe 

where, due to low solubility and relative freedom from microbial degradation, the 

history of their inputs is preserved. In lakes there is rapid deposition and often little 

bioturbation of lead, resulting in an excellent depositional history of changes in both 

natural and anthropogenic sources. The objective of this study was to use sediments 

from a regionally bounded set of lakes to provide an indication of the rates of 

environmental inputs of lead whilst taking into account differences of trophic state and 

lead exposure between lakes. Intact sediment gravity cores were collected from 13 

Rotorua lakes in North Island of New Zealand between March 2006 and January 2007.  

Cores penetrated sediments to a depth of 16-30 cm and contained volcanic tephra from 

the 1886 AD Tarawera eruption. The upper depth of the Tarawera tephra enabled 

prescription of a date for the associated depth in the core (120 years). Each core showed 

a sub-surface peak in lead concentration above the Tarawera tephra which was 

contemporaneous with the peak use of lead alkyl as a petroleum additive in New 

Zealand. An 8 m piston core was taken in the largest of the lakes, Lake Rotorua, in 

March 2007. The lake is antipodal to the pre-industrial sources of atmospheric lead but 

still shows increasing lead concentrations from < 2 up to 3.5 µg g
-1

 between the 

Whakatane eruption (5530 ± 60 cal. yr BP) and the Tarawera eruption. Peaks in lead 

concentration in Lake Rotorua are associated with volcanic tephras, but are small 

compared with those arising from recent anthropogenic-derived lead deposition. Our 

results show that diagenetic processes associated with iron, manganese and sulfate 
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oxidation-reduction, and sulfide precipitation, act to smooth distributions of lead from 

anthropogenic sources in the lake sediments. The extent of this smoothing can be related 

to changes in sulfate availability and reduction in sulfide driven by differences in 

trophic status amongst the lakes. Greatest lead mobilisation occurs in mesotrophic lakes 

during seasonal anoxia as iron and manganese are released to the porewater, allowing 

upward migration of lead towards the sediment-water interface. This lead mobilisation 

can only occur if sulfides are not present. The sub-surface peak in lead concentrations in 

lake sediments ascribed to lead alkyl in petroleum persists despite the diagenetic 

processes acting to disperse lead within the sediments and into the overlying water. 
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1. Introduction 

Lead has a long residence time in the environment compared with most other 

pollutants (Davies, 1990; Nriagu, 1998). Natural sources of  lead include particulates 

transported to lake sediments directly from erosion of sediments in the catchment, 

mobilisation of lead from the weathering of catchment bedrock and soils (Renberg et 

al., 2002), and atmospheric inputs from volcanic eruptions (Graney et al., 1995). 

Historically, the natural airborne lead fraction has been insignificant compared with 

supply from catchments (Bindler et al., 2001). With increasing anthropogenic additions 

of lead to the natural environment it has been possible to distinguish anthropogenic 

sources in disparate environments such as the Arctic (Sturges and Barrie, 1989), Pacific 

Ocean atmosphere (Settle and Patterson,1982), Antarctic and Greenland ice (Murozumi 

et al., 1969; Rosman et al., 1993; Hong et al., 1994), peat bogs (Shotyk et al., 1998), 

Alantic and Pacific Ocean corals (Shen and Boyle, 1987), coastal marine sediments 

(Chow et al., 1973; Veron et al., 1987)
 
 and lake sediments (Edgington and Robbins, 

1976; Graney et al., 1995; Monna et al., 1999; Renberg et al., 2002). In these studies, 

isotopic ratios and/or changes in concentrations of lead have been used to infer a variety 

of different sources.  Local emissions from industrial and urban sources dominate the 

lead found in lake sediments (Monna et al., 1999; Harrison and Laxen, 1984). In New 

Zealand, the only significant, broadscale anthropogenic source of lead is from 

petroleum additives. In the absence of natural environmental fluctuations, variations in 

lead within recent lake sediments should reflect changes in anthropogenic sources, 

whilst variations amongst lakes may reflect complex interactions with the 

environmental conditions leading to net deposition to the sediments. 

In New Zealand lead alkyls were first added to petroleum in the 1920s as a cheap 

and convenient method of boosting octane ratings and reducing uneven ignition 

(“knocking”) in combustion engines. When leaded petroleum is combusted in a motor 

vehicle engine, > 75% of lead is emitted from the exhaust as large particles which fall 
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rapidly to the ground, while finer particles stay airborne for considerably longer periods 

of time (Eisenreich et al., 1986). By contrast, the exhaust from the predominantly two-

stroke motor boat fleet is generally discharged directly to water. Prior to 1986, New 

Zealand had one of the highest levels of lead in petrol (0.84 g L
-1

) of any nation (Taylor, 

1998).  Despite a reduction in 1986 to 0.45 g L
-1

, levels were still high compared with 

elsewhere. For example, most of Europe, including Britain, had reduced lead additives 

by 1986 to 0.15 g L
-1

 and the limit for the United States was 0.026 g L
-1

(Taylor, 1998). 

A transition from leaded to unleaded petroleum took place in New Zealand between 

1987 and 1996, resulting in almost complete elimination of airborne lead from the New 

Zealand environment (Wilson and Horrocks, 2008)
 
. In summary, except for a brief 

interruption in the 1940s, lead alkyl consumption in New Zealand increased steadily 

from the 1930s, plateaued between 1975 and 1986, and then decreased rapidly (Fig. 1).  

Once lead has entered a lake, both specific asdorption and ion exchange 

mechanisms operate to transfer lead onto suspended sediments. The most significant 

sink for heavy metals in aerobic waters is scavenging by colloidal hydrous ferric and 

manganese oxides (Fe(OH)3 and MnO2) (Harrison and Laxen, 1981). The sorption 

process is rapid and mostly irreversible, especially if the metal is incorporated with the 

hydrous oxide as it is precipitated. However, the adsorption is strongly pH dependent, 

increasing with an increase in pH. Hydrous ferric and manganese oxides are readily 

reduced and become soluble under anaerobic conditions, and may release their 

associated metals. In eutrophic lakes the sediments ,may be anoxic for long periods, 

with sulfate (if sufficent is present) being reduced to sulfide, which removes any lead 

from the soluble phase via transformation to highly insoluble lead sulfide (Harrison and 

Laxen, 1981). In oligotrophic lakes the sediments may still be anoxic, but generally for 

brief periods of time and at much greater depth below the sediment-water interface, so 

that diagenetic immobilisation of lead will occur only deeper in the bottom sediments.  

The aim of our study was to use sediments from a diverse set of lakes within the 

Rotorua region of New Zealand to indicate rates of environmental inputs of lead whilst 

taking into account differences of trophic state and lead exposure between the lakes. 

The lakes investigated range in trophic status from oligotrophic to highly eutrophic and 

also vary in exposure to leaded petroleum emissions (Table 1). The relatively isolated 

location and recent human settlement of New Zealand provided an opportunity to assess 

the geochemical transitions of lead in lake sediments associated with additions to 

petroleum. 
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FIG. 1: Total amout of lead entering the New Zealand environment from petroleum consumption 

calculated by the total amount of petroleum consumed multiplied by the reported percentage of  lead 

additive. Data from Statistics New Zealand (1960; L. Mackie, personal communication, February 17, 

2009) and Ministry of Commerce (1996). 

 

2. Materials and Methods 

2.1 Study sites  

The Rotorua lakes have been formed up to 140 000 years ago from a series of 

volcanic eruptions that characterise the Taupo Volcanic Zone (TVZ) (Fig. 2) and have 

provided a series of stratigraphic markers for dating lake sediments (Lowe and Green, 

1987). The most recent, the Tarawera tephra (arising from 10 June, 1886) is very 

distinctive in the sediment and can be easily distinguished visually within the top metre 

of sediment in all of the Rotorua Lakes. The tephra is described by Pullar and Kennedy 

(1981) as comprising of Tarawera scoria, a loose scoriaceous dark coloured coarse 

material underlying the Rotomahana mud, a grey to olive grey sandy to silty material. It 

is this upper extent of the Rotomahana mud layer that we term the „depth to the 

Tarawera tephra‟. The Rotorua District is still geothermically active, with lakes 

Rotorua, Rotoiti, Tarawera, Rotomahana and Rotoehu influenced by geothermal inflows 

(Vincent and Forsyth, 1987), which contribute significant sulfate to these lakes 

(Timperly and Vigor-Brown, 1986). 
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 FIG. 2: Location of the Rotorua lakes, showing sample sites (marked with     for core 1 and      for core 2) 

and trophic status (shaded) of Rotorua lakes, within the Taupo Volcanic Centre (TVC) (solid line), New 

Zealand. The Okataina Volcanic Centre (OVC) is located in the Rotorua region and is shown by the 

dashed line. It is these volcanic centeres that are the source of the tephra layers used to date the sediment. 

Note only one core was collected in Green Lake. 

 

The Rotorua lakes vary widely in trophic status (oligotrophic to highly 

eutrophic) and have two predominant mixing regimes; monomictic and polymictic 

(Table 1) (McColl, 1977; Burns et al., 1997; Trolle et al., 2008). Lake trophic status and 

silica availability are important controls on sedimentation rates (mainly diatom frustules 

where there is sufficient silica) and the extent of chemical reduction within the 

sediments (Trolle et al., 2008). A detailed chemical composition for the Rotorua lakes is 

given in Timperley and Vigor-Brown (1986).  Sedimentation rates for the lakes are 

quoted from Trolle et al. (2008) who determined the depth to the Tarawera tephra in 

multiple cores taken from central deep basin of each of the lakes. They assumed a 

constant sedimentation rate since 1886. Where lakes have become more eutrophic 

subsequently, sedimentation rates can also be expected to increase, especially where 

diatoms predominate (Fish, 1969; Flint, 1977).  
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TABLE 1: Physical characteristics of the Rotorua Lakes (McColl, 1975; Timperley, 

1975; Burns et al., 1997; Trolle et al., 2008). 

 

Foot note: * Some variables for Green Lake have not been determined.   

Physical characteristics of the lakes from McColl (1975); Timperley (1975) and Burns et al. (1997). 

Sedimentation rate from Trolle et al. (2008) showing the mean value and range in parentheses. Trophic 

state is evaluated by Environment Bay of Plenty using the Trophic Level Index (TLI) (Burns et al., 2009). 

Potential lead exposure is rated by usage of the lake by motorised vessels, proximity to major roads and 

urban runoff. High input has been assigned to Lakes Rotorua and Rotoiti because of the density of 

settlement, extent of major roads and high usage by motor vessels. Tikitapu is a small lake used 

intensively for motorised water sports. Lakes Okataina, Rotomahana and Rerewhakaaitu have limited 

access, negligible urbanisation and motorised vessels are only occasionally encountered; they have been 

assigned low input.  

 

2.2  Sampling methods 

Sediments from thirteen Rotorua lakes; Rotoma, Tarawera, Okataina, Tikitapu, 

Okareka, Rotokakahi, Rerewhakaaitu, Rotomahana, Rotoiti, Rotoehu, Rotorua, Okaro 

and Green Lake, were sampled between March 2006 and January 2007. Two cores 

separated by a few metres were taken at a site near the deepest part of the central basin 

in each lake (Fig. 2; Table 2), targeting areas conforming to accumulation bottoms (cf. 

Håkanson and Jansson, 1983).  Cores were taken with a Swedish gravity corer (Pylonex 

HTH 70 mm) with a 60 x 600 mm Perspex (Plexiglas) core barrel to capture 

undisturbed sediments. The gravity corer penetrated to a depth between c. 16 and 30 cm 

depending on the density of the sediment. The surface sediment was visually inspected 

in each core to determine if there was any disturbance at the sediment-water interface or 

in the sediment profile; the core was discarded and another core taken if the core was 

considered to have been disturbed during coring. A description of the core was 

recorded, including the depth to the Tarawera tephra. A custom made gas-tight sampling 

chamber, designed to minimise exposure of potentially anoxic sediment to the air, was 

fitted to the core barrel and, following retrieval, the core was extruded by a piston from 

the base of the core. Excess supernatant water overflowed the top of the core before the 

sediment sample was collected. Samples were extruded in 2 cm intervals and transferred 

Lake
Mean depth 

(m)

Max. depth 

(m)

Lake area 

(ha)

Catchment 

area (ha)

Sedimentation rate 

(1886-2006) (mm y-1)

Trophic            

state 

Mixing 

Regime

Potential 

Lead Input

Rotoma 36.9 83.0 1104 2914 1.4 (0.9-1.8) Oligotrophic M Moderate

Tarawera 50.0 87.5 4165 14 494 2.2 (2.1-2.3) Oligotrophic M Moderate

Okataina 39.4 78.5 1104 5676 1.4 (1.4-1.4) Oligotrophic M Low

Tikitapu 18.0 27.5 146 567 0.6 (0.6-0.6) Oligotrophic M High

Rotokakahi 17.5 32.0 452 1872 1.0 (0.3-1.4) Mesotrophic M Moderate

Okareka 20.0 33.5 342 1958 1.4 (1.3-1.5) Mesotrophic M Moderate

Rerewhakaaitu 7.0 15.8 579 3816 1.7 (1.6-1.8) Mesotrophic P Low

Rotomahana 60.0 125.0 897 7994 0.8 (0.75-0.9) Mesotrophic M Low

Rotoiti 31.5 124.0 3460 12 462 1.7 (1.7-1.7) Eutrophic M High

Rotoehu 8.2 13.5 795 5673 2.6 (2.6-2.6) Eutrophic P Moderate

Rotorua 11.0 44.8 8079 52 346 3.0 (3.0-3.0) Eutrophic P High

Okaro 12.5 18.0 32 407 2.3 (1.5-2.8) Highly Eutrophic M Moderate

Green Lake *  - 26.2 1.12 2.16 *  - Highly Eutrophic M Very Low
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into 50 mL polypropylene centrifuge tubes which were then sealed and placed on ice 

until return to the laboratory.  

 

TABLE 2: Details of sediment cores taken for this study. 

 

Footnote: Sedimentation rates calculated from depth to Tarawera tephra in the captured core. 

 

In March 2007, a piston core was taken through progressively deeper sediments 

in Lake Rotorua to a depth of 8 m below the sediment surface in a water depth of 18.4 

m. The core was taken using a 3 m modified Livingstone piston coring system fed 

through a 15 cm diameter PVC pipe to guide the piston core to the same location on the 

lake bed for each successive core (Pickett, 2008). Sequential 3 m piston cores were 

extracted into longitudinally sectioned PVC tubes of the same diameter as the core 

barrel. As the piston coring method fails to capture the upper few cm of sediment an 

additional gravity core was collected adjacent to the piston core, and processed in the 

same way as the gravity cores from other lakes. This allowed the interpolation of the 

sediment record to the sediment-water interface. In the laboratory, the piston core was 

split using a wire cutter and the exposed core surface cleaned by scraping back to a 

uniform flat surface to ensure any sedimentary or structural features became evident and 

Lake
Core 

no.

Water depth of sample 

site (m)

Depth to Tarawera 

tephra (mm)

Core sedimentation rate 

(mm y-1)

Rotoma 1 81.7 200 1.7

2 35.6 180 1.5

Tarawera 1 82.2 260 2.2

2 83.5 240 2.0

Okataina 1 69.1 160 1.3

2 68.1 160 1.3

Tikitapu 1 25.2 90 0.8

2 25.4 90 0.8

Rotokakahi 1 28.7 130 1.1

2 28.6 130 1.1

Okareka 1 28.5 180 1.5

2 24.8 140 1.2

Rerewhakaaitu 1 13.7 220 1.8

2 10.0 260 2.2

Rotomahana 1 74.0 90 0.8

2 74.0 120 1.0

Rotoiti 1 64.9 300 2.5

2 4.8 170 1.4

Rotorua 1 18.4 460 3.8

2 18.4 460 3.8

Rotoehu 1 9.8 300 2.5

2 9.6 300 2.5

Okaro 1 15.0 300 2.5

2 17.0 320 2.7

Green Lake 1 10.2 300 + < 2.5
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distinguishable from any features originating from the core splitting process. The core 

was then described and photographed (Pickett, 2008). Sediment samples of 

approximately 0.5 cm were cut from the core at 1 cm intervals to achieve a high-

resolution sediment record. Tephra horizons were recognised by textural and colour 

changes (white to pale grey), within the olive diatomaceous lake sediment (Table 3) and 

confirmed by x-ray imaging. The majority of the tephra layers exhibited primary 

depositional features with a sharp base that readily enabled recognition of the tephra 

extent and depth.  

 

TABLE 3: Details of tephra located in the Lake Rotorua core. 

 

Foot note: Tephras were identified by on the basis of field appearance, stratigraphic position, 

ferromagnesian mineralogy, and major element glass chemistry (Pickett, 2008). Source shows the origin 

of tephra (Okataina Volcanic Centre, Taupo Volcanic Centre (Fig.2)). Age (Cal yrs. B.P) is the 

radiocarbon date with before present (B.P. 1950) taken from Lowe et al. (2008). Inferred sedimentation 

rate shows the rate of sediment accumulation between the tephra and the next overlying dated tephra. The 

Tarawera tephra shows the sedimentation rate for sediment accumulated since the eruption. The rate is 

calculated from comparison between both piston and gravity cores. The tephra lead concentration shows 

the maximum lead value present in the samples taken from the tephra layer. 

 

 

2.3  Analytical methods 

In the laboratory, the gravity core sediments were weighed to determine bulk 

density before porewaters were separated by centrifugation at 4000 rpm for 40 min.  All 

sediments were dried at 105 °C for 24 h and ground using a mortar and pestle. Lead 

content of the sediment was determined after the solids had been digested with reverse 

aqua regia at 50 °C for one hour based on a modified standard procedure (Martin et al., 

1994). The resulting digest was analysed using inductively coupled plasma mass 

spectrometry (ICP-MS model ELAN DRC II). The sediment dry weight fraction was 

determined by weighing solid samples before and after drying, and taking into account 

Tephra Name Source
Age 

(Cal. yrs B.P.)
Year

Depth in sed. 

(mm)

Inferred 

sedimentation 

rate (mm yr-1)

Tephra Pb 

conc. (µg g-1)

Tarawera OVC 64 1886 AD 360-450 3.3 8.80

Reworked 1 - 2110-2126 3.40

TgVC ash TVC 2190-2200 1.99

Reworked 2 - 3880-3900 1.94

Reworked 3 - 5010-5020 2.79

Kaharoa OVC 636  12 1314  12 AD 5040-5130 3.45 2.40

Taupo (Unit Y) TVC 1717  13 233  13 AD 5670-5690 0.48 1.63

Waimihia (Unit S) + secondary 

Whakaipo tephra (Unit V)
TVC 3410  40 1460 BC 6730-6750 0.61 2.79

Whakatane + secondary Unit K OVC 5530  60 3580 BC 6950- 0.12 0.84
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porewater mass. The pore water was filtered through a 0.45 μm Millipore filter and 

acidified with nitric acid before analysis on ICP-MS as above. Scanning electron 

microscope (SEM) images were taken of the dried Lake Rotorua sediment before it was 

ground to assess the nature of the sediment. A detailed analysis of the composition of 

the sediment under SEM can be found in Pearson (2007) and Pickett (2008). 

 

3. Results and Discussion 

3.1 Preindustrial lead  

An age model to identify pre-industrial sediment deposition in the Rotorua core 

was created from the thicknesses of biogenic material between tephras of known age 

(Whakatane (5530 ± 60 cal. BP), Waimihia (3410 ± 20 cal. BP), Taupo (1717 ± 13 cal. 

BP), Kaharoa (c. AD 1314 ± 12) and the Tarawera eruption (AD 1886) (Balance, 1981; 

Newnham et al., 1998; Hogg et al., 2003; Lowe et al., 2008)) assuming constant 

sedimentation rates between eruption events.
 
Tephra layers recorded as „reworked‟ were 

not included in the age model as they are inferred to be caused by the reworking of 

coarse-grained tephra in shallower water, with these sediments deposited in the deeper 

lake basin during large storm events (c. 1300, 520 and 220 cal years B.P) (Pickett, 

2008). The thickness of the reworked layers was accounted for in the determination of 

the sedimentation rate as these sediments are not biogenic material.  

Lake Rotorua is antipodal to the preindustrial sources of atmospheric lead but still 

shows increases in lead concentrations from < 2 up to 3.5 µg g
-1

 between the Whakatane 

eruption (5530 ± 60 cal. yrs BP) and the Tarawera eruption (Fig. 3).  These changes 

parallel the trend of increases in lead observed in European and American lake 

sediments (Renberg et al., 1994; Graney et al., 1995; Monna et al, 1999; Renberg et al., 

2002), but at much lower levels. Settle and Patterson (1980) concluded that because the 

residence time of atmospheric aerosols is an order of magnitude less than the inter-

hemispheric exchange time, the impact in the Southern hemisphere from Northern 

hemisphere sources would be about one-tenth of that in the Northern Hemisphere; 

similar to fraction of lead in Lake Rotorua relation to the Northern Hemisphere lakes. 

Concentrations of lead in the Rotorua core have local maxima centred around the 

tephra layers in pre-indrustiral sediments. Lead concentrations increase (> 2 µg Pb g
-1

) 

in the core commencing soon after deposition of the Tongariro tephra (age unknown but 

approximately 1700 AD), which may be related to a global increase in atmospheric lead 

levels (Settle and Patterson, 1980; Renberg et al., 1994) as there was no significant 

source of lead in New Zealand at this time of early Polynesian settlement. Globally, lead 

production has continued to increase since 5000 years BP and the concentration of lead 

in the sediments of Lake Rotorua mimics this global production trend (Fig. 3). An 

increase in lead concentrations, well above background levels or those of any of the 

tephras, occurred at a depth of 10 cm below the top of the core, where the peak is 14.1 

µg Pb g
-1

 (Fig. 3). We attribute this peak to an increase in anthopogenic lead sources.  
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FIG. 3: Lead concentration in a Lake Rotorua sediment core with depositional age in excess of 5500 years 

on the left vertical axis.  Global lead production for the same time period on the right vertical axis (Settle 

and Patterson, 1980). Annotations show volcanic events. Insert graph shows the lead concentration in 

Lake Rotorua for the period 1880 to present. 

 

3.2 Anthropogenic lead 

Identification of sediments likely to be impacted by local anthropogenic emissions 

is facilitated by the presence of the Tarawera tephra, which occurs in all of the Rotorua 

lakes. Sources of anthropogenic lead in the Rotorua lakes were negligible before the 

1950s, peaked in the 1980s and declined during the 1990s, as lead was withdrawn from 

petroleum (Statistics New Zealand, 1960; L. Mackie, personal communication, 

February 17, 2009). Sediment profiles of the lead concentration in the Rotorua lakes all 

show a subsurface peak above the Tarawera tephra, with the exception of Green Lake 

(Fig. 4). The spatial variation between the sampling sites in the lakes is not significant 

with both profiles exhibiting similar results.  Figure 5 shows a sediment profile of lead 

concentrations based on proportional age assuming a steady sedimentation rate since the 

Tarawera eruption (1886). The concentration and pattern of distribution of lead in the 

sediments of the Rotorua lakes show differences consistent with trophic status. 

Oligotrophic lakes (Fig. 5a) show a steady increase in lead concentrations since the 

Tarawera tephra, with a peak between 7 and 12 µg g
-1

 between 1950 and 1970, followed 

by a decline towards the sediment-water interface. Mesotrophic lakes (Fig. 4b) show a 

higher peak lead concentration (12-15 µg g
-1

) between sediments aged 1970 and 1990, 

while eutrophic lakes, Rotoehu, Okaro and Rotoiti (Fig. 4c), show a peak in lead 

concentration up to 25 µg g
-1

 between 1920 and 1950, followed by a steady decline 
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towards the sediment-water interface. Lakes with the lowest sedimentation rates 

(Tikitapu and Rotomahana; see Table 1) both have peak lead concentrations very close 

to the sediment surface. Peak concentrations of lead appear in sediments older than 

those corresponding to the peak discharge of lead to the environment. The extent of the 

displacement appears to be closely related to lake trophic status with the greatest 

displacement in the most eutrophic lakes.  

  

FIG. 4: Sediment concentration profiles of lead in the Rotorua lakes. Two cores (marked with    and    ) 

were collected from the 13 lakes. Plots are arranged from oligotrophic to eutrophic (from left to right and 

top to bottom). If present in the core, the start of the Tarawera tephra layer, a layer of ash deposited 

during the 1886 AD eruption, has been highlighted (marked with            for sites represented by   ,   

 for sites represented by    , and           where the tephra layer was present at the same vertical 

depth for both sites. The y-axis represents depth below the sediment-water interface (cm) and the x-axis 

represents the lead concentration (µg g
-1

 dry wt.).  Note the different scales for both axes.   
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FIG. 5: Concentration of lead in sediment of a) oligotrophic lakes b) mesotrophic lakes and c) eutrophic 

lakes versus the sediment age calculated by the accumulation rate (mg cm
-2

 yr
-1

 from bulk density) to the 

Tarawera tephra. Each data point represents a 2 cm slice of core.  

  

3.3 Redistribution of lead and diagenesis within lake sediments 

Lakes Rotorua, Rotoehu, Rotoiti and Okaro have become significantly eutrophied 

in recent decades (Burns et al., 2009), resulting in high rates of organic matter 

deposition (Trolle et al., 2009) and a peak lead concentration that is deeper in the 

sediment. In these lakes there is a broad distribution of elevated lead concentrations 

across the depth profile as a result of diagenesis and re-precipitation. Analyses of pore 

waters in these lakes typically show increasing concentrations of iron and manganese 

and decreasing concentrations of sulfur with depth below the sediment-water interface 

(Fig. 6). In many of the lake sediments, iron concentrations in the pore waters remain 

low and do not display systematic changes until sulfur concentrations are low. Scanning 

Electron Microscope (SEM) images of dried sediments from Lake Rotorua produced 

high densities of small framboidal clusters of pyrite that we suggest are indicative of 

supersaturation and precipitation of iron sulfides (Fig. 7). Energy dispersive x-ray 

fluorescence (XRF) analysis of the framboidal pyrite detected significant fluorescence‟s 

for sulphur, iron and minor fluorescence for lead. . Lead is most likely bound to the 

surfaces of diatom frustules and inorganic particle surfaces by iron or manganese 

hydroxides and oxy-hydroxides, as indicated by a high covariance between lead and 

iron (r=0.98 p<0.01), and lead and manganese (r=0.93 p<0.01) in the top 20 cm of 

sediment (Pearson, 2007). While the sediments remain oxidised, iron and manganese 

adsorption can be expected to maintain the lead in a particulate, immobile form (Sigg, 

1985). With burial, the sediments of all of the lakes will become anoxic, which will 

induce reduction of manganese and iron, and mobilization of the lead. This effect is 

most pronounced in eutrophic lakes, with seasonally anoxic hypolimnia where sulfide 

generation in the sediments results in precipitation of lead sulfide, limiting the 
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concentration of lead in the porewaters (Schindler, 1985). As sulfate reduction tends to 

occur deeper in the sediment than iron or manganese reduction, this process tends to 

redistribute lead from deeper in the sediments, reducing peak concentrations and 

smearing distributions across the depth profile as observed in Fig. 5. 

 

FIG. 6: Mean annual concentrations of sulfur, iron, manganese and lead in porewaters of selected Rotorua 

Lakes. In a) Lake Tarawera the hypolimnion remains oxygenated the whole year, whereas in b) Lake 

Okataina the hypolimnion experiences seasonal anoxia during summer stratification (3 months) and in c) 

Lake Rotoiti the hypolimnion remains anoxic for half of the year (c. 6 months). 
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FIG. 7: Scanning Electron Microscope image of Lake Rotorua sediment showing a) the dominance of 

Aulacoseira granulata (diatom) frustules (cylindrical shape) over other diatom species and mineral 

particles, b) Rotomahana mud (Tarawera Tephra) erupted from Lake Rotomahana during the Tarawera 

eruption), c) increased magnification of Rotomahama mud layer showing the presence of diatoms within 

the mud layer and d) framboidal pyrite (upper left of foreground) and Aulacoseira granulata frustule. 

 

3.4 Lake Outliers 

Lakes Tikitapu, Rotomahana and Green Lake are outliers to the general pattern 

in other Rotorua lakes of occurrence of peak lead at a depth dependent on trophic status 

(Figs 4 and 5). Lake Tikitapu has a low concentration of reactive silicate (0.01-0.30 mg 

Si L
-1

) (McColl, 1972), resulting in negligible representation of diatoms amongst the 

phytoplankton assemblage of this lake (Ryan, 2006).  This lake has a correspondingly 

very low sedimentation rate (0.6 mm yr
-1

; Trolle, 2008) and the lead peak is not 

resolved as a sub-surface peak at the 2 cm vertical sampling resolution used in this 

study. Modern Lake Rotomahana was created by the 1886 Tarawera eruption (Balance, 

1981). It has a low sedimentation rate (0.8 mm yr
-1

; Trolle et al., 2008, and 1 mm yr
-1

 

estimated from our study) and is inaccessible to the general public, limiting its exposure 

to anthropogenic lead sources. The accumulation of lead in Lake Rotomahana sediment 

is therefore likely to be largely through catchment erosion, dominated by the 

Rotomahana Mud unit of the Tarawera eruption, and atmospheric aerosols. The lake has 

high sulphate concentrations from geothermal inputs which are reduced in the sediment 

porewaters, preventing mobilisation of iron and lead through precipitation.  The third 

outlier is Green Lake, which is a very small, highly eutrophic lake located 10 m from 

a) b)

a)

c) d)
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the shore of Lake Rotomahana. It was formed as an explosion crater during the 

Tarawera eruption (1886). The lake is totally inaccessible to motor boats and has 

negligible external catchment; groundwater and rainfall may contribute a substantial 

fraction of the total hydraulic load to the lake.  Lead concentrations in the sediments of 

this lake are very low (< 2 µg Pb g
-1

) and comparable to prehistoric concentrations in 

Swedish lake sediments (Renburg et al., 1994), further suggesting that atmospheric 

deposition may be the dominant source of lead to the lake.   

 

4.     Conclusions 

Leaded petroleum has had negative impacts on human health across the globe. 

Despite phasing out this chemical it is still widely distributed in the environment, 

accumulating in depositional areas such as lake sediments, where it can provide an 

historical marker of human use. In New Zealand, anthropogenic lead inputs to lakes are 

not contaminated by other industrial sources and, accounting for diagenetic processes, 

the sediment depositional layers therefore provide an accurate historical record of 

leaded petroleum usage. For the relatively recent period of pre-European settlement in 

New Zealand (late 18
th

 century) deeper sediments of the Rotorua lakes, corresponding 

to those deposited within this period, have low lead concentrations.  In sediments above 

the Tarawera tephra layer there is a now a clearly identifiable stratum corresponding to 

anthropogenic lead from petroleum products. Variations between lakes are a function of 

exposure to leaded petroleum within the catchment and lake, as well as lake trophic 

state and redox status in lower water layers, which alters sedimentation rates and 

vertical transport of lead in the sediments.  Diagenesis results in some redistribution of 

lead as iron and manganese are mobilised through oxidation and are immobilised by 

sulfate reduction to produce insoluble sulfides. The anthropogenic lead peak from lead 

alkyl petroleum additives can be expected to be buried rapidly, and is unlikely to affect 

the aquatic system unless sediments are significantly disturbed. 
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