2,876 research outputs found

    The influence of genetic architecture on responses to selection under drought in rice

    Get PDF
    Accurately predicting responses to selection is a major goal in biology and important for successful crop breeding in changing environments. However, evolutionary responses to selection can be constrained by such factors as genetic and cross-environment correlations, linkage, and pleiotropy, and our understanding of the extent and impact of such constraints is still developing. Here, we conducted a field experiment to investigate potential constraints to selection for drought resistance in rice (Oryza sativa) using phenotypic selection analysis and quantitative genetics. We found that traits related to drought response were heritable, and some were under selection, including selection for earlier flowering, which could allow drought escape. However, patterns of selection generally were not opposite under wet and dry conditions, and we did not find individual or closely linked genes that influenced multiple traits, indicating a lack of evidence that antagonistic pleiotropy, linkage, or cross-environment correlations would constrain selection for drought resistance. In most cases, genetic correlations had little influence on responses to selection, with direct and indirect selection largely congruent. The exception to this was seed mass under drought, which was predicted to evolve in the opposite direction of direct selection due to correlations. Because of this indirect effect on selection on seed mass, selection for drought resistance was not accompanied by a decrease in seed mass, and yield increased with fecundity. Furthermore, breeding lines with high fitness and yield under drought also had high fitness and yield under wet conditions, indicating that there was no evidence for a yield penalty on drought resistance. We found multiple genes in which expression influenced both water use efficiency (WUE) and days to first flowering, supporting a genetic basis for the trade-off between drought escape and avoidance strategies. Together, these results can provide helpful guidance for understanding and managing evolutionary constraints and breeding stress-resistant crops

    Pathogenic Activation of Mesenchymal Stem Cells Is Induced by the Disease Microenvironment in Systemic Sclerosis

    Get PDF
    Objective: In systemic sclerosis (SSc), a persistent tissue repair process leads to progressive fibrosis of the skin and internal organs. The role of mesenchymal stem cells (MSCs), which characteristically initiate and regulate tissue repair, has not been fully evaluated. We undertook this study to investigate whether dividing metakaryotic MSCs are present in SSc skin and to examine whether exposure to the disease microenvironment activates MSCs and leads to transdifferentiation. Methods: Skin biopsy material from patients with recent-onset diffuse SSc was examined by collagenase spread of 1-mm–thick surface-parallel sections, in order to identify dividing metakaryotic stem cells in each tissue plane. Adipose-derived MSCs from healthy controls were treated with dermal blister fluid (BF) from patients with diffuse SSc and profiled by next-generation sequencing, or they were evaluated for phenotypic changes relevant to SSc. Differential responses of dermal fibroblasts were studied in parallel. Results: MSC-like cells undergoing active metakaryotic division were identified in SSc sections (but not control sections) most prominently in the deep dermis and adjacent to damaged microvessels, in both clinically involved and uninvolved skin. Furthermore, exposure to SSc BF caused selective MSC activation, inducing a myofibroblast signature, while reducing signatures of vascular repair and adipogenesis and enhancing migration and contractility. Microenvironmental factors implicated in inducing transdifferentiation included the profibrotic transforming growth factor β, the presence of lactate, and mechanosensing, while the microenvironment Th2 cytokine, interleukin-31, enhanced osteogenic commitment (calcinosis). Conclusion: Dividing MSC-like cells are present in the SSc disease microenvironment where multiple factors, likely acting in concert, promote transdifferentiation and lead to a complex and resistant disease state

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    The Earth BioGenome Project 2020: Starting the clock.

    Get PDF

    The Earth BioGenome Project 2020: Starting the clock.

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lewin, H. A., Richards, S., Lieberman Aiden, E., Allende, M. L., Archibald, J. M., Bálint, M., Barker, K. B., Baumgartner, B., Belov, K., Bertorelle, G., Blaxter, Mark L., Cai, J., Caperello, N. D., Carlson, K., Castilla-Rubio, J. C., Chaw, S-M., Chen, L., Childers, A. K., Coddington, J. A., Conde, D. A., Corominas, M., Crandall, K. A., Crawford, A. J., DiPalma, F., Durbin, R., Ebenezer, T. E., Edwards, S. V., Fedrigo, O., Flicek, P., Formenti, G., Gibbs, R. A., Gilbert, M. Thomas P., Goldstein, M. M., Graves, J. M., Greely, H. T., Grigoriev, I. V., Hackett, K. J., Hall, N., Haussler, D., Helgen, K. M., Hogg, C. J., Isobe, S., Jakobsen, K. S., Janke, A., Jarvis, E. D., Johnson, W. E., Jones, S. J. M., Karlsson, E. K., Kersey, P. J., Kim, J-H., Kress, W. J., Kuraku, S., Lawniczak, M. K. N., Leebens-Mack, J. H., Li, X., Lindblad-Toh, K., Liu, X., Lopez, J. V., Marques-Bonet, T., Mazard, S., Mazet, J. A. K., Mazzoni, C. J., Myers, E. W., O’Neill, R. J., Paez, S., Park, H., Robinson, G. E., Roquet, C., Ryder, O. A., Sabir, J. S. M., Shaffer, H. B., Shank, T. M., Sherkow, J. S., Soltis, P. S., Tang, B., Tedersoo, L., Uliano-Silva, M., Wang, K., Wei, X., Wetzer, R., Wilson, J. L., Xu, X., Yang, H., Yoder, A. D., Zhang, G. The Earth BioGenome Project 2020: starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 119(4), (2022): e2115635118, https://doi.org/10.1073/pnas.2115635118.November 2020 marked 2 y since the launch of the Earth BioGenome Project (EBP), which aims to sequence all known eukaryotic species in a 10-y timeframe. Since then, significant progress has been made across all aspects of the EBP roadmap, as outlined in the 2018 article describing the project’s goals, strategies, and challenges (1). The launch phase has ended and the clock has started on reaching the EBP’s major milestones. This Special Feature explores the many facets of the EBP, including a review of progress, a description of major scientific goals, exemplar projects, ethical legal and social issues, and applications of biodiversity genomics. In this Introduction, we summarize the current status of the EBP, held virtually October 5 to 9, 2020, including recent updates through February 2021. References to the nine Perspective articles included in this Special Feature are cited to guide the reader toward deeper understanding of the goals and challenges facing the EBP

    The Earth BioGenome Project 2020: Starting the clock.

    Get PDF

    Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information

    Get PDF
    Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/

    Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies

    Get PDF
    Background Genome-wide association studies (GWAS) in Parkinson's disease have increased the scope of biological knowledge about the disease over the past decade. We aimed to use the largest aggregate of GWAS data to identify novel risk loci and gain further insight into the causes of Parkinson's disease. Methods We did a meta-analysis of 17 datasets from Parkinson's disease GWAS available from European ancestry samples to nominate novel loci for disease risk. These datasets incorporated all available data. We then used these data to estimate heritable risk and develop predictive models of this heritability. We also used large gene expression and methylation resources to examine possible functional consequences as well as tissue, cell type, and biological pathway enrichments for the identified risk factors. Additionally, we examined shared genetic risk between Parkinson's disease and other phenotypes of interest via genetic correlations followed by Mendelian randomisation. Findings Between Oct 1, 2017, and Aug 9, 2018, we analysed 7·8 million single nucleotide polymorphisms in 37 688 cases, 18 618 UK Biobank proxy-cases (ie, individuals who do not have Parkinson's disease but have a first degree relative that does), and 1·4 million controls. We identified 90 independent genome-wide significant risk signals across 78 genomic regions, including 38 novel independent risk signals in 37 loci. These 90 variants explained 16–36% of the heritable risk of Parkinson's disease depending on prevalence. Integrating methylation and expression data within a Mendelian randomisation framework identified putatively associated genes at 70 risk signals underlying GWAS loci for follow-up functional studies. Tissue-specific expression enrichment analyses suggested Parkinson's disease loci were heavily brain-enriched, with specific neuronal cell types being implicated from single cell data. We found significant genetic correlations with brain volumes (false discovery rate-adjusted p=0·0035 for intracranial volume, p=0·024 for putamen volume), smoking status (p=0·024), and educational attainment (p=0·038). Mendelian randomisation between cognitive performance and Parkinson's disease risk showed a robust association (p=8·00 × 10−7). Interpretation These data provide the most comprehensive survey of genetic risk within Parkinson's disease to date, to the best of our knowledge, by revealing many additional Parkinson's disease risk loci, providing a biological context for these risk factors, and showing that a considerable genetic component of this disease remains unidentified. These associations derived from European ancestry datasets will need to be followed-up with more diverse data. Funding The National Institute on Aging at the National Institutes of Health (USA), The Michael J Fox Foundation, and The Parkinson's Foundation (see appendix for full list of funding sources)

    Cognitive Neuropsychology of HIV-Associated Neurocognitive Disorders

    Get PDF
    Advances in the treatment of the human immunodeficiency virus (HIV) have dramatically improved survival rates over the past 10 years, but HIV-associated neurocognitive disorders (HAND) remain highly prevalent and continue to represent a significant public health problem. This review provides an update on the nature, extent, and diagnosis of HAND. Particular emphasis is placed on critically evaluating research within the realm of cognitive neuropsychology that aims to elucidate the component processes of HAND across the domains of executive functions, motor skills, speeded information processing, episodic memory, attention/working memory, language, and visuoperception. In addition to clarifying the cognitive mechanisms of HAND (e.g., impaired cognitive control), the cognitive neuropsychology approach may enhance the ecological validity of neuroAIDS research and inform the development of much needed novel, targeted cognitive and behavioral therapies
    corecore