60 research outputs found

    An Emerging Natural History in the Development, Mechanisms and Worldwide Prevalence of Major Mental Disorders

    Get PDF
    Conciliating recent findings from molecular genetics, evolutionary biology, and clinical observations together point to new understandings regarding the mechanism, development and the persistent worldwide prevalence of major mental disorders (MMDs), which should be considered the result of an evolutionary downside trade off. Temperamental/trait variability, by facilitating choices for individual and group responses, confers robustness flexibility and resilience crucial to success of our species. Extreme temperamental variants, originating evolutionarily from the asocial aspect of human nature, also constitute the premorbid personality of the disorders. The latter create vulnerable individuals out of whom some will develop MMDs but at much higher rate to that of the general population. Significantly, similar temperamental “lopsidedness� enables many of these vulnerable individuals, if intelligent, tenacious, and curious, to be creative and contribute to our survival while some may also develop MMDs. All have a common neural-developmental origin and share characteristics in their clinical expression and pharmacological responses also expressed as mixed syndromes or alternating ones over time. Over-pruning of synaptic neurons may be considered the trigger of such occurrences or conversely, the failure to prevent them in spite of it. The symptoms of the major mental disorders are made up of antithetical substitutes as an expression of a disturbed over-all synchronizing property of brain function for all higher faculties previously unconsidered in their modeling. The concomitant presence of psychosis is a generic common occurrence

    Search for high-mass new phenomena in the dilepton final state using proton–proton collisions at View the MathML sources=13TeV with the ATLAS detector

    Get PDF
    A search is conducted for both resonant and non-resonant high-mass new phenomena in dielectron and dimuon final states. The search uses View the MathML source3.2fb−1 of proton–proton collision data, collected at View the MathML sources=13TeV by the ATLAS experiment at the LHC in 2015. The dilepton invariant mass is used as the discriminating variable. No significant deviation from the Standard Model prediction is observed; therefore limits are set on the signal model parameters of interest at 95% credibility level. Upper limits are set on the cross-section times branching ratio for resonances decaying to dileptons, and the limits are converted into lower limits on the resonance mass, ranging between 2.74 TeV and 3.36 TeV, depending on the model. Lower limits on the ℓℓqqℓℓqq contact interaction scale are set between 16.7 TeV and 25.2 TeV, also depending on the mode

    The Physics of the B Factories

    Get PDF

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Action physiologique de la radioactivité faible

    No full text
    Pas de Résumé disponibl

    Prestel in use A consumer view

    No full text
    LD:f82/2626 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    The relevance of American power The Anglo-American past and the Euro-Atlantic future

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:5293.2085(49) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    The formative years The evolution of photography's role in British periodical advertising during the 1920's and 1930's

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN004230 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Monetary laws National and international

    No full text
    SIGLELD:D46254/83 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore