68 research outputs found

    3114 Optical zone centration of excimer laser photo-refractive keratectomy for myopia relative to the pupil with and without the use of an active eye tracking system

    Get PDF
    Explosive volcanic eruptions can eject large quantities of particulate matter that, along with other aerosol droplets and trace gases, are carried upwards into the atmosphere by the buoyant eruption column and then dispersed by winds aloft. The presence in the atmosphere of volcanic ash is a sporadic yet important factor that can threaten human health, affect the urban built environment, disrupt aerial navigation and, for very large eruptions, alter both atmospheric composition and chemistry. Once volcanic ash is injected into the atmosphere, it can be transported over great distances, even circumnavigating the entire planet. Volcanic ash modeling systems are used to simulate the atmospheric dispersion of volcanic ash and to generate operational short-term forecasts to support civil aviation and emergency management. The efficiency of response and mitigation actions is directly associated to the accuracy of the volcanic ash cloud detection. Volcanic ash modeling systems normally require an emission or source term model to characterize the eruption column; a dispersal model to simulate the atmospheric transport, dispersion and ground deposition of ash particles; and a meteorological model for the description of the atmospheric conditions. Traditional forecasts for volcanic ash build on off-line coupled modeling systems, where meteorological variables are only updated at the specified coupling intervals. Although this approach is computationally advantageous is some cases, there is a concern that it can lead to a number of accuracy issues and limitations that can be corrected by on-line modeling strategies. Despite these concerns, to date, no on-line coupled model is available for operational forecast of volcanic ash. In addition, the quantification of the limitations associated to the off-line systems has received no attention. This Ph.D. thesis describes and evaluates NMMB-MONARCH-ASH, a novel fully coupled on-line multiscale meteorological and atmospheric transport model designed to predict ash cloud trajectories, concentration of ash at relevant flight levels, and the expected deposit thickness for both regional and global domains in research and operational set-ups. The first activity targeted a model validation against several well-characterized events including, the Mt. Etna 2001, Eyjafjallajökull 2010, and Cordón Caulle 2011 eruptions. The model has shown to be robust, scalable, and capable to reproduce the spatial and temporal dispersal variability of the ash cloud and tephra deposits, showing promising results and improving the performance from well-known off-line operational models. The second activity quantified the model shortcomings and systematic errors associated to traditional off-line forecasts employed in operational set-ups. NMMB-MONARCH-ASH demonstrated that off-line forecasts could fail to reproduce up to 45-70% of the ash cloud of an on-line forecast, considered to be the best estimate of the true outcome. The uncertainty associated to off-line systems was found to be as relevant (same order of magnitude) as those uncertainties attributed to the source term. The third activity focused on a global application of NMMB-MONARCH-ASH to analyze the potential impacts of ash dispersal from Antarctic volcanoes. Numerical simulations suggested that volcanic ash emitted from Antarctic volcanoes could potentially encircle the globe, leading to significant consequences for global aviation safety. The last activity included a novel computational inversion method to account, for the first time, for the Plinian and co-ignimbrite phases of the 39 ka Campanian Ignimbrite super-eruption. This particular application employed the off-line coupled FALL3D model, found to be more suitable from a computational point of view. The outcome of this Ph.D. thesis encourages operational groups responsible for real-time advisories for aviation to consider using computationally efficient on-line coupled ash dispersal models.Las erupciones volcánicas explosivas pueden emitir una gran cantidad de material que, junto con otros aerosoles y gases traza, son inyectados en la atmósfera por la columna eruptiva para luego ser dispersados por los vientos en altura. La presencia en la atmósfera de cenizas volcánicas es un factor esporádico aunque importante, que puede llegar a amenazar la salud humana, afectar las infraestructuras urbanas, interrumpir la navegación aérea y, en el caso de grandes erupciones, alterar la composición atmosférica y química. Una vez en la atmósfera, la ceniza puede ser transportada a grandes distancias, llegando incluso a circunnavegar todo el planeta. Los sistemas de modelado de cenizas volcánicas se utilizan para simular la dispersión atmosférica de estas partículas, y para generar pronósticos operacionales a corto plazo empleados para dar soporte a la aviación civil y a la gestión de emergencias. La eficacia para responder a estos eventos está directamente asociada a la precisión de los modelos de transporte de cenizas volcánicas. Los sistemas de modelado de cenizas volcánicas requieren de un modelo de emisión de partículas para la caracterización de la columna eruptiva; un modelo de dispersión para la simulación del transporte atmosférico y la deposición de cenizas; y de un modelo meteorológico para la descripción de las condiciones atmosféricas. Los pronósticos tradicionales se basan en sistemas de modelado desacoplados (off-line), donde las variables meteorológicas sólo se actualizan a intervalos de tiempo especificados. Aunque este enfoque presenta ventajas desde el punto de vista computacional, existe la preocupación de que puede estar asociado a limitaciones y problemas de precisión que, por el contrario, pueden ser corregidos mediante estrategias de modelado acoplado (on-line). A pesar de estas preocupaciones, hasta la fecha no hay un modelo acoplado on-line disponible para el pronóstico operativo de la cenizas volcánicas. Además, tampoco existe una cuantificación de las limitaciones asociadas a los sistemas off-line. Este doctorado describe y evalúa NMMB-MONARCH-ASH, un modelo de transporte meteorológico y atmosférico multiescalar (regional/global) completamente acoplado on-line, para su uso en investigación y predicción operacional. El modelo está diseñado para predecir trayectorias de cenizas volcánicas, concentración de ceniza en niveles de vuelo (flight levels), y el correspondiente espesor de depósito. La primera actividad de esta tesis se centra en la validación de modelo mediante erupciones bien caracterizadas (Mt. Etna 2001, Eyjafjallajökull 2010, y del Cordón Caulle 2011). El modelo ha demostrado ser robusto, escalable y capaz de reproducir la variabilidad de la dispersión espacial y temporal de los depósitos y de las nubes de ceniza, ostrando resultados prometedores y mejorando el rendimiento de modelos operacionales. La segunda actividad cuantifica los errores sistemáticos asociados a los pronósticos off-line. NMMB-MONARCH-ASH demuestra que estps pronósticos podrían no reproducir hasta un 45-70% de la nube de cenizas de un pronóstico on-line, considerado éste último como la mejor estimación de la realidad. Esta actividad concluye que la incertidumbre asociada a los sistemas off-line puede llegar a ser tan relevante como aquellas incertidumbres atribuidas al término fuente. La tercera actividad se centra en una aplicación global de NMMB-MONARCH-ASH para analizar los posibles impactos asociados a la dispersión de ceniza de volcanes antárticos. Los resultados alertan de las posibles consequencias de estas erupciones en la aviación a nivel mundial . La última actividad incluye un nuevo método de inversión computacional para identificar, por primera vez, las fases Pliniana y coignimbrita de la super-erupción de la Ignimbrita Campaniana (39 ka) con FALL3D. Los resultados de este Ph.D. alientan a considerar el uso de modelos acoplados on-line para generar pronósticos operacionales de ceniza volcánica

    European multidisciplinary consensus statement on the use and monitoring of metal-on-metal bearings for total hip replacement and hip resurfacing.

    Get PDF
    Summary Introduction There is an ongoing debate about the optimal use of metal-on-metal (MoM) bearings in total hip replacement, since there are uncertainties about local and systemic adverse effects due to wear and corrosion of these bearings. Despite various national recommendations, efforts to achieve international harmonization of specific evidence-based recommendations for best practice are still lacking. Hypothesis An international consensus study group should be able to develop recommendations on the use and monitoring of MoM bearings, preferably at the European level, through a multidisciplinary approach, by integrating the perspectives of various stakeholders. Materials and methods Twenty-one experts representing three stakeholder groups and eight countries participated in this European consensus study, which consisted of a consensus meeting, subsequent structured discussion, and consensus voting. Results The current statement defines first of all benefits, local and systemic risks, as well as uncertain issues related to MoM bearings. Safety assessment after implantation of MoM comprises all patients. A closer follow-up is recommended for large head MoM (≥ 36 mm) and resurfacing. In these implants basic follow-up should consist of x-rays and metal ion measurement of cobalt in whole blood, performed with GF-AAS or ICP-MS. Clinical and/or radiographic abnormality as well as elevated ion levels needs additional imaging (ultrasound, CT-scan and/or MARS-MRI). Cobalt values less than 2 μg/L are probably devoid of clinical concern, the threshold value for clinical concern is expected to be within the range of 2–7 μg/L. Discussion This is the first multinational, interdisciplinary, and multiprofessional approach for developing a recommendation for the use and monitoring of MoM bearings in total hip replacement. The current recommendations are in partial agreement with previous statements regarding the extent of follow-up and imaging techniques. They however differ from previous communications regarding measurement of metal ions and especially the investigated medium, technique, and eventual threshold levels. Level of evidence Level V, expert opinion/agreement conference

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams

    Search for a Higgs boson decaying into γ*γ→ℓℓγ with low dilepton mass in pp collisions at √s=8 TeV

    Get PDF
    A search is described for a Higgs boson decaying into two photons, one of which has an internal conversion to a muon or an electron pair ( ℓℓγ ). The analysis is performed using proton–proton collision data recorded with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb −1 . The events selected have an opposite-sign muon or electron pair and a high transverse momentum photon. No excess above background has been found in the three-body invariant mass range 12

    Honey and propolis production, hygiene and defense behaviors of two generations of Africanized honey bees

    Full text link
    Phenotypic characters of honeybees, relevant to beekeepers, can be evaluated by studying correlations between them, and the correlated characteristics can be evaluated in the short term to assist in monitoring of annual genetic progress. This work therefore aims to evaluate the production of honey and propolis, the hygiene and defensive behaviours of two generations of Africanized Apis mellifera (Hymenoptera, Apidae), to estimate the correlations between them and their heritability. We used 30 Langstroth beehives in apiaries in Marechal Cândido Rondon, Paraná State, Brazil. We used a method of drilling pupae to evaluate hygiene behaviour and the velveteen ball method to test defensive behaviour. We selected ten colonies which had the best honey and propolis production, and which produced F1 queens that were then transferred to beehives at an experimental farm, in order to observe honey and propolis production, hygiene and defence behaviours of their female offspring. The estimated differences for each characteristic between the generations, the correlations between them within each generation and their heritability suggest that selection of colonies based on propolis production was more efficient at maintaining this high production than was selection based on honey production according to the performance of the colonies for this characteristic. The selected behavioural characteristics can be used to enhance performance, but not for improving yield characteristics evaluated

    Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS hadron calorimeter with cosmic ray muons and LHC beam data

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS Hadron Calorimeter in the barrel, endcap and forward regions is fully commissioned. Cosmic ray data were taken with and without magnetic field at the surface hall and after installation in the experimental hall, hundred meters underground. Various measurements were also performed during the few days of beam in the LHC in September 2008. Calibration parameters were extracted, and the energy response of the HCAL determined from test beam data has been checked.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore