13 research outputs found

    Untangling the chemical evolution of Titan's atmosphere and surface–from homogeneous to heterogeneous chemistry

    Full text link
    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date

    Confined propagation of covalent chemical reactions on single-walled carbon nanotubes

    Get PDF
    Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; NEES; National Science Foundation [CHE-1055514]; Office of Naval Research [Covalent chemistry typically occurs randomly on the graphene lattice of a carbon nanotube because electrons are delocalized over thousands of atomic sites, and rapidly destroys the electrical and optical properties of the nanotube. Here we show that the Billups-Birch reductive alkylation, a variant of the nearly century-old Birch reduction, occurs on single-walled carbon nanotubes by defect activation and propagates exclusively from sp(3) defect sites, with an estimated probability more than 1,300 times higher than otherwise random bonding to the 'pi-electron sea'. This mechanism quickly leads to confinement of the reaction fronts in the tubular direction. The confinement gives rise to a series of interesting phenomena, including clustered distributions of the functional groups and a constant propagation rate of 18 +/- 6 nm per reaction cycle that allows straightforward control of the spatial pattern of functional groups on the nanometre length scale

    Application of renormalized coupled-cluster methods to potential function of water

    Get PDF
    Abstract The goal of this paper is to examine the performance of the conventional and renormalized single-reference coupled-cluster (CC) methods in calculations of the potential energy surface of the water molecule. A comparison with the results of the internally contracted multi-reference configuration interaction calculations including the quasi-degenerate Davidson correction (MRCI(Q)) and the spectroscopically accurate potential energy surface of water resulting from the use of the energy switching (ES) approach indicates that the relatively inexpensive completely renormalized (CR) CC methods with singles (S), doubles (D), and a non-iterative treatment of triples (T) or triples and quadruples (TQ), such as CR-CCSD(T), CR-CCSD(TQ), and the recently developed rigorously size extensive extension of CR-CCSD(T), termed CR-CC(2,3), provide substantial improvements in the results of conventional CCSD(T) and CCSD(TQ) calculations at larger internuclear separations. It is shown that the CR-CC(2,3) results corrected for the effect of quadruply excited clusters through the CR-CC(2,3)+Q approach can compete with the highly accurate MRCI(Q) data. The excellent agreement between the CR-CC(2,3)+Q and MRCI(Q) results suggests ways of improving the global potential energy surface of water resulting from the use of the ES approach in the regions of intermediate bond stretches and intermediate energies connecting the region of the global minimum with the asymptotic regions
    corecore