3,455 research outputs found
Eigenvalues and Singular Values of Products of Rectangular Gaussian Random Matrices (The Extended Version)
We consider a product of an arbitrary number of independent rectangular
Gaussian random matrices. We derive the mean densities of its eigenvalues and
singular values in the thermodynamic limit, eventually verified numerically.
These densities are encoded in the form of the so called M-transforms, for
which polynomial equations are found. We exploit the methods of planar
diagrammatics, enhanced to the non-Hermitian case, and free random variables,
respectively; both are described in the appendices. As particular results of
these two main equations, we find the singular behavior of the spectral
densities near zero. Moreover, we propose a finite-size form of the spectral
density of the product close to the border of its eigenvalues' domain. Also,
led by the striking similarity between the two main equations, we put forward a
conjecture about a simple relationship between the eigenvalues and singular
values of any non-Hermitian random matrix whose spectrum exhibits rotational
symmetry around zero.Comment: 50 pages, 8 figures, to appear in the Proceedings of the 23rd Marian
Smoluchowski Symposium on Statistical Physics: "Random Matrices, Statistical
Physics and Information Theory," September 26-30, 2010, Krakow, Polan
Financial instability from local market measures
We study the emergence of instabilities in a stylized model of a financial
market, when different market actors calculate prices according to different
(local) market measures. We derive typical properties for ensembles of large
random markets using techniques borrowed from statistical mechanics of
disordered systems. We show that, depending on the number of financial
instruments available and on the heterogeneity of local measures, the market
moves from an arbitrage-free phase to an unstable one, where the complexity of
the market - as measured by the diversity of financial instruments - increases,
and arbitrage opportunities arise. A sharp transition separates the two phases.
Focusing on two different classes of local measures inspired by real markets
strategies, we are able to analytically compute the critical lines,
corroborating our findings with numerical simulations.Comment: 17 pages, 4 figure
Eigenvalues and Singular Values of Products of Rectangular Gaussian Random Matrices
We derive exact analytic expressions for the distributions of eigenvalues and
singular values for the product of an arbitrary number of independent
rectangular Gaussian random matrices in the limit of large matrix dimensions.
We show that they both have power-law behavior at zero and determine the
corresponding powers. We also propose a heuristic form of finite size
corrections to these expressions which very well approximates the distributions
for matrices of finite dimensions.Comment: 13 pages, 3 figure
Asymmetric correlation matrices: an analysis of financial data
We analyze the spectral properties of correlation matrices between distinct
statistical systems. Such matrices are intrinsically non symmetric, and lend
themselves to extend the spectral analyses usually performed on standard
Pearson correlation matrices to the realm of complex eigenvalues. We employ
some recent random matrix theory results on the average eigenvalue density of
this type of matrices to distinguish between noise and non trivial correlation
structures, and we focus on financial data as a case study. Namely, we employ
daily prices of stocks belonging to the American and British stock exchanges,
and look for the emergence of correlations between two such markets in the
eigenvalue spectrum of their non symmetric correlation matrix. We find several
non trivial results, also when considering time-lagged correlations over short
lags, and we corroborate our findings by additionally studying the asymmetric
correlation matrix of the principal components of our datasets.Comment: Revised version; 11 pages, 13 figure
Dual-readout Calorimetry
The RD52 Project at CERN is a pure instrumentation experiment whose goal is
to understand the fundamental limitations to hadronic energy resolution, and
other aspects of energy measurement, in high energy calorimeters. We have found
that dual-readout calorimetry provides heretofore unprecedented information
event-by-event for energy resolution, linearity of response, ease and
robustness of calibration, fidelity of data, and particle identification,
including energy lost to binding energy in nuclear break-up. We believe that
hadronic energy resolutions of {\sigma}/E 1 - 2% are within reach for
dual-readout calorimeters, enabling for the first time comparable measurement
preci- sions on electrons, photons, muons, and quarks (jets). We briefly
describe our current progress and near-term future plans. Complete information
on all aspects of our work is available at the RD52 website
http://highenergy.phys.ttu.edu/dream/.Comment: 10 pages, 10 figures, Snowmass White pape
Hadron detection with a dual-readout fiber calorimeter
In this paper, we describe measurements of the response functions of a
fiber-based dual- readout calorimeter for pions, protons and multiparticle
"jets" with energies in the range from 10 to 180 GeV. The calorimeter uses lead
as absorber material and has a total mass of 1350 kg. It is complemented by
leakage counters made of scintillating plastic, with a total mass of 500 kg.
The effects of these leakage counters on the calorimeter performance are
studied as well. In a separate section, we investigate and compare different
methods to measure the energy resolution of a calorimeter. Using only the
signals provided by the calorimeter, we demonstrate that our dual-readout
calorimeter, calibrated with electrons, is able to reconstruct the energy of
proton and pion beam particles to within a few percent at all energies. The
fractional widths of the signal distributions for these particles (sigma/E)
scale with the beam energy as 30%/sqrt(E), without any additional contributing
terms
Accounting for risk of non linear portfolios: a novel Fourier approach
The presence of non linear instruments is responsible for the emergence of
non Gaussian features in the price changes distribution of realistic
portfolios, even for Normally distributed risk factors. This is especially true
for the benchmark Delta Gamma Normal model, which in general exhibits
exponentially damped power law tails. We show how the knowledge of the model
characteristic function leads to Fourier representations for two standard risk
measures, the Value at Risk and the Expected Shortfall, and for their
sensitivities with respect to the model parameters. We detail the numerical
implementation of our formulae and we emphasizes the reliability and efficiency
of our results in comparison with Monte Carlo simulation.Comment: 10 pages, 12 figures. Final version accepted for publication on Eur.
Phys. J.
Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector
An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
- …
