8 research outputs found

    Fermented Chinese Formula Shuan-Tong-Ling Protects Brain Microvascular Endothelial Cells against Oxidative Stress Injury

    Get PDF
    Fermented Chinese formula Shuan-Tong-Ling (STL), composed of fourteen medicinal herbs, was an experiential formula by Dr. Zhigang Mei for treating vascular encephalopathy, but the underlying mechanisms remained unknown. In this study, we aimed to investigate the protective effects of fermented STL on hydrogen peroxide- (H2O2-) induced injury in rat brain microvascular endothelial cells (BMECs) and the possible mechanisms. Cultured BMECs were treated with H2O2, STL, or nicotinamide (NAM, a SIRT1 inhibitor). Then, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was employed to detect cell proliferation and senescence-associated beta-galactosidase (SA-β-gal) was used to examine cell senescence. Cell nuclei were observed by 4′,6-diamidino-2-phenylindole. Additionally, changes in reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione (GSH) levels were measured. Expression of SIRT1, p21, and PGC-1α was determined by western blot. Cell proliferation significantly increased with STL treatment in a dose-dependent manner. H2O2 treatment could intensify cell senescence and nuclei splitting or pyknosis. With STL treatment, the reduced ROS level was accompanied by increased SOD and GSH activity. Further assays showed upregulation of SIRT1 and PGC-1α and downregulation of p21 after STL treatment. The results revealed that STL could protect BMECs against oxidative stress injury at least partially through the SIRT1 pathway

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    Palmitate Causes Endoplasmic Reticulum Stress and Apoptosis in Human Mesenchymal Stem Cells: Prevention by AMPK Activator

    No full text
    National Natural Science Foundation of China [81200560]; Fujian Technology Innovation Platform Project [2010Y2006]; Natural Science Foundation of Fujian Province [2010J05078, 2010J01217]Elevated circulating saturated fatty acids concentration is commonly associated with poorly controlled diabetes. The highly prevalent free fatty acid palmitate could induce apoptosis in various cell types, but little is known about its effects on human mesenchymal stem cells (MSCs). Here, we report that prolonged exposure to palmitate induces human bone marrow-derived MSC (hBM-MSC) and human umbilical cord-derived MSC apoptosis. We investigated the role of endoplasmic reticulum (ER) stress, which is known to promote cell apoptosis. Palmitate activated XBP1 splicing, elF2 alpha (eukaryotic translation initiation factor 2 alpha) phosphorylation, and CHOP, ATF4, BiP, and GRP94 transcription in hBM-MSCs. ERK1/2 and p38 MAPK phosphorylation were also induced by palmitate in hBM-MSCs. A selective p38 inhibitor inhibited palmitate activation of the ER stress, whereas the ERK1/2 inhibitors had no effect. The AMP-activated protein kinase activator aminoimidazole carboxamide ribonucleotide blocked palmitate-induced ER stress and apoptosis. These findings suggest that palmitate induces ER stress and ERK1/2 and p38 activation in hBM-MSCs, and AMP-activated protein kinase activator prevents the deleterious effects of palmitate by inhibiting ER stress and apoptosis. (Endocrinology 153:5275-5284, 2012

    The Antiapoptosis Effect of Geum japonicum Thunb. var. chinense Extracts on Cerebral Ischemia Reperfusion Injury via PI3K/Akt Pathway

    No full text
    Geum japonicum Thunb. var. chinense (GJ) is a type of wild vegetable found in China and other Asian countries; it has been reported that its extracts possess a neuroprotective effect against cerebral ischemia reperfusion (CIR) injury. The aim of this study is to explore the effect GJ extracts on transient focal CIR injury and neurons apoptosis and to clarify its possible underlying mechanisms in vivo. Our results indicated that pretreatment with GJ extracts significantly ameliorated the infarct volume, decreased neurological deficits, lessened neural cells apoptosis, downregulated GFAP activity level, and increased surviving neurons. Moreover, GJ extracts preadministration increased Bcl-2 levels and attenuated the increase in the expressions of Bax and it also lowered the cleaved caspase-3 activity in ischemic cortex tissues which was caused by CIR and increased the expression of PI3K and p-Akt. The above effects of high dose of GJ (GJ-H) group were much better than those of low dose of GJ (GJ-L), which indicated that GJ extracts may be helpful in the suppression of CIR injury with a dose-dependent manner
    corecore