23 research outputs found

    An Indo-Pacifc coral spawning database

    Get PDF
    The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Atomic Layer Deposition of TiO2 Nanocoatings on ZnO Nanowires for Improved Photocatalytic Stability

    No full text
    Photocatalytic water splitting represents an emerging technology well positioned to satisfy the growing need for low-energy, low CO2, economically viable hydrogen gas production. As such, stable, high-surface-area electrodes are increasingly being investigated as electrodes for the photochemical conversion of solar energy into hydrogen fuel. We present a titanium dioxide (TiO2)/zinc oxide (ZnO) nanowire array using a hybrid hydrothermal/atomic layer deposition (ALD) for use as a solar-powered photoelectrochemical device. The nanowire array consists of single crystalline, wurtzite ZnO nanowires with a 40 nm ALD TiO2 coating. By using a TiO2 nanocoating on the high surface area-ZnO array, three advancements have been accomplished in this work: (1) high aspect ratio nanowires with TiO2 for water splitting (over 8 μm), (2) improved stability over bare ZnO nanowires during photocatalysis, and (3) excellent onset voltage. As such, this process opens up new class of the micro/nanofabrication process for making efficient photocatalytic gas harvesting systems

    Titanium Disulfide Coated Carbon Nanotube Hybrid Electrodes Enable High Energy Density Symmetric Pseudocapacitors.

    No full text
    While electrochemical supercapacitors often show high power density and long operation lifetimes, they are plagued by limited energy density. Pseudocapacitive materials, in contrast, operate by fast surface redox reactions and are shown to enhance energy storage of supercapacitors. Furthermore, several reported systems exhibit high capacitance but restricted electrochemical voltage windows, usually no more than 1 V in aqueous electrolytes. Here, it is demonstrated that vertically aligned carbon nanotubes (VACNTs) with uniformly coated, pseudocapacitive titanium disulfide (TiS2 ) composite electrodes can extend the stable working range to over 3 V to achieve a high capacitance of 195 F g-1 in an Li-rich electrolyte. A symmetric cell demonstrates an energy density of 60.9 Wh kg-1 -the highest among symmetric pseudocapacitors using metal oxides, conducting polymers, 2D transition metal carbides (MXene), and other transition metal dichalcogenides. Nanostructures prepared by an atomic layer deposition/sulfurization process facilitate ion transportation and surface reactions to result in a high power density of 1250 W kg-1 with stable operation over 10 000 cycles. A flexible solid-state supercapacitor prepared by transferring the TiS2 -VACNT composite film onto Kapton tape is demonstrated to power a 2.2 V light emitting diode (LED) for 1 min

    Heterologous Expression of Mycobacterial Esx Complexes in <i>Escherichia coli</i> for Structural Studies Is Facilitated by the Use of Maltose Binding Protein Fusions

    Get PDF
    <div><p>The expression of heteroligomeric protein complexes for structural studies often requires a special coexpression strategy. The reason is that the solubility and proper folding of each subunit of the complex requires physical association with other subunits of the complex. The genomes of pathogenic mycobacteria encode many small protein complexes, implicated in bacterial fitness and pathogenicity, whose characterization may be further complicated by insolubility upon expression in <i>Escherichia coli</i>, the most common heterologous protein expression host. As protein fusions have been shown to dramatically affect the solubility of the proteins to which they are fused, we evaluated the ability of maltose binding protein fusions to produce mycobacterial Esx protein complexes. A single plasmid expression strategy using an N-terminal maltose binding protein fusion to the CFP-10 homolog proved effective in producing soluble Esx protein complexes, as determined by a small-scale expression and affinity purification screen, and coupled with intracellular proteolytic cleavage of the maltose binding protein moiety produced protein complexes of sufficient purity for structural studies. In comparison, the expression of complexes with hexahistidine affinity tags alone on the CFP-10 subunits failed to express in amounts sufficient for biochemical characterization. Using this strategy, six mycobacterial Esx complexes were expressed, purified to homogeneity, and subjected to crystallization screening and the crystal structures of the <i>Mycobacterium abscessus</i> EsxEF, <i>M</i>. <i>smegmatis</i> EsxGH, and <i>M. tuberculosis</i> EsxOP complexes were determined. Maltose binding protein fusions are thus an effective method for production of Esx complexes and this strategy may be applicable for production of other protein complexes.</p></div

    Ribbon representations of the structures of the Esx complexes determined in this study.

    No full text
    <p>The CFP-10 homologs are colored red and the ESAT-6 homologs are colored blue. (A) the EsxEF<sub>ma</sub> complex; (B), the EsxGH<sub>ms</sub> complex; and (C), the EsxOP<sub>mt</sub> complex. The N- and C-termini of individual chains are labeled and the disordered loop region of EsxO<sub>mt</sub> that connects its two α-helices is indicated by a dashed line. The tyrosine and acidic residues of the secretion signals of the EsxGH<sub>ms</sub> and EsxOP<sub>mt</sub> complexes are shown in stick representation.</p
    corecore