6,012 research outputs found
Accretion Disc Theory: From the Standard Model Until Advection
Accretion disc theory was first developed as a theory with the local heat
balance, where the whole energy produced by a viscous heating was emitted to
the sides of the disc. One of the most important new invention of this theory
was a phenomenological treatment of the turbulent viscosity, known as ''alpha''
prescription, when the (r) component of the stress tensor was
approximated by ( P) with a unknown constant . This
prescription played the role in the accretion disc theory as well important as
the mixing-length theory of convection for stellar evolution. Sources of
turbulence in the accretion disc are discussed, including nonlinear
hydrodynamical turbulence, convection and magnetic field role. In parallel to
the optically thick geometrically thin accretion disc models, a new branch of
the optically thin accretion disc models was discovered, with a larger
thickness for the same total luminosity. The choice between these solutions
should be done of the base of a stability analysis. The ideas underlying the
necessity to include advection into the accretion disc theory are presented and
first models with advection are reviewed. The present status of the solution
for a low-luminous optically thin accretion disc model with advection is
discussed and the limits for an advection dominated accretion flows (ADAF)
imposed by the presence of magnetic field are analysed.Comment: Roceeding of the Int. Workshop "Observational Evidence for Black
Holes in the Universe". Calcutta, 11-17 January 1998. Kluwer Acad. Pu
Accretion Disks Around Black Holes: Twenty Five Years Later
We study the progress of the theory of accretion disks around black holes in
last twenty five years and explain why advective disks are the best bet in
explaining varied stationary and non-stationary observations from black hole
candidates. We show also that the recently proposed advection dominated flows
are incorrect.Comment: 30 Latex pages including figures. Kluwer Style files included.
Appearing in `Observational Evidence for Black Holes in the Universe', ed.
Sandip K. Chakrabarti, Kluwer Academic Publishers (DORDRECHT: Holland
Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus : studies in the pig model of influenza
Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs
Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung
Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7 h and improved organ dysfunction with enhanced alveolar–capillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16 h) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation
Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci.
Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10(-6)) and rs8057927 in CDH13 (P=1.39 × 10(-5)). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10(-7)). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10(-7)). This signal was replicated in the follow-up analysis (P=2.3 × 10(-2)). Significant interaction with maternal CMV infection was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies
Domain wall brane in squared curvature gravity
We suggest a thick braneworld model in the squared curvature gravity theory.
Despite the appearance of higher order derivatives, the localization of gravity
and various bulk matter fields is shown to be possible. The existence of the
normalizable gravitational zero mode indicates that our four-dimensional
gravity is reproduced. In order to localize the chiral fermions on the brane,
two types of coupling between the fermions and the brane forming scalar is
introduced. The first coupling leads us to a Schr\"odinger equation with a
volcano potential, and the other a P\"oschl-Teller potential. In both cases,
the zero mode exists only for the left-hand fermions. Several massive KK states
of the fermions can be trapped on the brane, either as resonant states or as
bound states.Comment: 18 pages, 5 figures and 1 table, references added, improved version
to be published in JHE
CDK-dependent nuclear localization of B-Cyclin Clb1 promotes FEAR activation during meiosis I in budding yeast
Cyclin-dependent kinases (CDK) are master regulators of the cell cycle in eukaryotes. CDK activity is regulated by the presence, post-translational modification and spatial localization of its regulatory subunit cyclin. In budding yeast, the B-cyclin Clb1 is phosphorylated and localizes to the nucleus during meiosis I. However the functional significance of Clb1's phosphorylation and nuclear localization and their mutual dependency is unknown. In this paper, we demonstrate that meiosis-specific phosphorylation of Clb1 requires its import to the nucleus but not vice versa. While Clb1 phosphorylation is dependent on activity of both CDK and polo-like kinase Cdc5, its nuclear localization requires CDK but not Cdc5 activity. Furthermore we show that increased nuclear localization of Clb1 during meiosis enhances activation of FEAR (Cdc Fourteen Early Anaphase Release) pathway. We discuss the significance of our results in relation to regulation of exit from meiosis I
Regional pressure and temperature differences across the injured human brain : comparisons between intraparenchymal and ventricular measurements
Introduction: Intraparenchymal, multimodality sensors are commonly used in the management of patients with severe traumatic brain injury (TBI). The ‘gold standard’, based on accuracy, reliability and cost for intracranial pressure (ICP) monitoring is within the cerebral ventricle (external strain gauge). There are no standards yet for intracerebral temperature monitoring and little is known of temperature differences between brain tissue and ventricle. The aim of the study therefore was to determine pressure and temperature differences at intraparenchymal and ventricular sites during five days of continuous neurominitoring.
Methods: Patients with severe TBI requiring emergency surgery. Inclusion criteria: patients who required ICP monitoring were eligible for recruitment. Two intracerebral probe types were used: a) intraventricular, dual parameter sensor (measuring pressure, temperature) with inbuilt catheter for CSF drainage: b) multiparameter intraparenchymal sensor measuring pressure, temperature and oxygen partial pressure. All sensors were inserted during surgery and under aseptic conditions.
Results: Seventeen patients, 12 undergoing neurosurgery (decompressive craniectomy n=8, craniotomy n=4) aged 21–78 years were studied. Agreement of measures for 9540 brain tissue-ventricular temperature ‘pairs’ and 10,291 brain tissue-ventricular pressure ‘pairs’ were determined using mixed model to compare mean temperature and pressure for longitudinal data. There was no significant overall difference for mean temperature (p=0.92) or mean pressure readings (p=0.379) between tissue and ventricular sites. With 95.8% of paired temperature readings within 2SD (−0.4 to 0.4°C) differences in temperature between brain tissue and ventricle were clinically insignificant. For pressure, 93.5% of readings pairs fell within the 2SD range (−9.4756 to 7.8112 mmHg) (Fig. 2). However, for individual patients, agreement for mean tissue-ventricular pressure differences was poor on occasions.
Conclusions: There is good overall agreement between paired temperature measurements obtained from deep white matter and brain ventricle in patients with and without early neurosurgery. For paired ICP measurements, 93.5% of readings were within 2SD of mean difference. Whilst the majority of paired readings were comparable (within 10mmHg) clinically relevant tissue-ventricular dissociations were noted. Further work is required to unravel the events responsible for short intervals of pressure dissociation before tissue pressure readings can be definitively accepted as a reliable surrogate for ventricular pressure.</p
How functional programming mattered
In 1989 when functional programming was still considered a niche topic, Hughes wrote a visionary paper arguing convincingly ‘why functional programming matters’. More than two decades have passed. Has functional programming really mattered? Our answer is a resounding ‘Yes!’. Functional programming is now at the forefront of a new generation of programming technologies, and enjoying increasing popularity and influence. In this paper, we review the impact of functional programming, focusing on how it has changed the way we may construct programs, the way we may verify programs, and fundamentally the way we may think about programs
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
