38 research outputs found
Applying the mesolens to microbiology : visualising biofilm architecture and substructure
Biofilms pose a public health risk due to their ability to protect bacteria from mechanical, environmental and chemical factors. Thereby they can confer resistance to their constituent bacteria and serve as a vehicle for spread of antimicrobial resistance [1]. Understanding the structure of bacterial communities is critical to developing novel methods of biofilm eradication. Current techniques for imaging live biofilms are limited by sacrificing the size of the imaging volume or spatial resolution. Common approaches to imaging biofilm architecture include electron microscopy techniques [2], single or multi-photon confocal microscopy [3] or wide field epi-fluorescence microscopy using low-magnification, low-numerical aperture lenses [4]. Here we use the Mesolens, an optical microscope with a unique combination of a low magnification (x4) and a high numerical aperture (0.47) which can image specimens up to 6x6x3 mm in volume with a lateral resolution of 700 nm and an axial resolution of 7 μm [5]. Using the Mesolens, it is possible to image whole live colony biofilms with cellular resolution in a single dataset. We report the finding of intra-colony channels (measuring ca.15 μm in diameter) which form when Escherichia coli colonies are grown on a solid surface as an inherent property of biofilm formation. By tracking the movement of 200 nm fluorescent microspheres, we observe translocation of the microspheres from the base of the biofilm into the colony with specific localisation to the channel systems. The uptake of microspheres by the colony, infers that these features are inherent to biofilm formation and provide a role in structural support. The biofilms in this work were grown on a nutrient-rich solid medium, and by expanding from the observations of our bead uptake assay we can deduce that the channels may also play a role in nutrient uptake and dissemination throughout the colony. These findings serve as evidence of a fundamental principle of structural biology and bacterial organisation
1-year health outcomes associated with systemic corticosteroids for COVID-19:a longitudinal cohort study
BACKGROUND: In patients with coronavirus disease 2019 (COVID-19) requiring supplemental oxygen, dexamethasone reduces acute severity and improves survival, but longer-term effects are unknown. We hypothesised that systemic corticosteroid administration during acute COVID-19 would be associated with improved health-related quality of life (HRQoL) 1 year after discharge.METHODS: Adults admitted to hospital between February 2020 and March 2021 for COVID-19 and meeting current guideline recommendations for dexamethasone treatment were included using two prospective UK cohort studies (Post-hospitalisation COVID-19 and the International Severe Acute Respiratory and emerging Infection Consortium). HRQoL, assessed by the EuroQol-Five Dimensions-Five Levels utility index (EQ-5D-5L UI), pre-hospital and 1 year after discharge were compared between those receiving corticosteroids or not after propensity weighting for treatment. Secondary outcomes included patient-reported recovery, physical and mental health status, and measures of organ impairment. Sensitivity analyses were undertaken to account for survival and selection bias.FINDINGS: Of the 1888 participants included in the primary analysis, 1149 received corticosteroids. There was no between-group difference in EQ-5D-5L UI at 1 year (mean difference 0.004, 95% CI -0.026-0.034). A similar reduction in EQ-5D-5L UI was seen at 1 year between corticosteroid exposed and nonexposed groups (mean±sd change -0.12±0.22 versus -0.11±0.22). Overall, there were no differences in secondary outcome measures. After sensitivity analyses modelled using a cohort of 109 318 patients admitted to hospital with COVID-19, EQ-5D-5L UI at 1 year remained similar between the two groups.INTERPRETATION: Systemic corticosteroids for acute COVID-19 have no impact on the large reduction in HRQoL 1 year after hospital discharge. Treatments to address the persistent reduction in HRQoL are urgently needed.</p
A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: a randomised, double-blind, proof-of-concept, phase 2 trial
Background Cough can be a debilitating symptom of idiopathic pulmonary fibrosis (IPF) and is difficult to treat. PA101 is a novel formulation of sodium cromoglicate delivered via a high-efficiency eFlow nebuliser that achieves significantly higher drug deposition in the lung compared with the existing formulations. We aimed to test the efficacy and safety of inhaled PA101 in patients with IPF and chronic cough and, to explore the antitussive mechanism of PA101, patients with chronic idiopathic cough (CIC) were also studied. Methods This pilot, proof-of-concept study consisted of a randomised, double-blind, placebo-controlled trial in patients with IPF and chronic cough and a parallel study of similar design in patients with CIC. Participants with IPF and chronic cough recruited from seven centres in the UK and the Netherlands were randomly assigned (1:1, using a computer-generated randomisation schedule) by site staff to receive PA101 (40 mg) or matching placebo three times a day via oral inhalation for 2 weeks, followed by a 2 week washout, and then crossed over to the other arm. Study participants, investigators, study staff, and the sponsor were masked to group assignment until all participants had completed the study. The primary efficacy endpoint was change from baseline in objective daytime cough frequency (from 24 h acoustic recording, Leicester Cough Monitor). The primary efficacy analysis included all participants who received at least one dose of study drug and had at least one post-baseline efficacy measurement. Safety analysis included all those who took at least one dose of study drug. In the second cohort, participants with CIC were randomly assigned in a study across four centres with similar design and endpoints. The study was registered with ClinicalTrials.gov (NCT02412020) and the EU Clinical Trials Register (EudraCT Number 2014-004025-40) and both cohorts are closed to new participants. Findings Between Feb 13, 2015, and Feb 2, 2016, 24 participants with IPF were randomly assigned to treatment groups. 28 participants with CIC were enrolled during the same period and 27 received study treatment. In patients with IPF, PA101 reduced daytime cough frequency by 31·1% at day 14 compared with placebo; daytime cough frequency decreased from a mean 55 (SD 55) coughs per h at baseline to 39 (29) coughs per h at day 14 following treatment with PA101, versus 51 (37) coughs per h at baseline to 52 (40) cough per h following placebo treatment (ratio of least-squares [LS] means 0·67, 95% CI 0·48–0·94, p=0·0241). By contrast, no treatment benefit for PA101 was observed in the CIC cohort; mean reduction of daytime cough frequency at day 14 for PA101 adjusted for placebo was 6·2% (ratio of LS means 1·27, 0·78–2·06, p=0·31). PA101 was well tolerated in both cohorts. The incidence of adverse events was similar between PA101 and placebo treatments, most adverse events were mild in severity, and no severe adverse events or serious adverse events were reported. Interpretation This study suggests that the mechanism of cough in IPF might be disease specific. Inhaled PA101 could be a treatment option for chronic cough in patients with IPF and warrants further investigation
Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS)trial
Background: In laboratory animals, exposure to most general anaesthetics leads to neurotoxicity manifested by neuronal cell death and abnormal behaviour and cognition. Some large human cohort studies have shown an association between general anaesthesia at a young age and subsequent neurodevelopmental deficits, but these studies are prone to bias. Others have found no evidence for an association. We aimed to establish whether general anaesthesia in early infancy affects neurodevelopmental outcomes.
Methods: In this international, assessor-masked, equivalence, randomised, controlled trial conducted at 28 hospitals in Australia, Italy, the USA, the UK, Canada, the Netherlands, and New Zealand, we recruited infants of less than 60 weeks' postmenstrual age who were born at more than 26 weeks
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Cohort Profile: Post-hospitalisation COVID-19 study (PHOSP-COVID)
PHOSP-COVID is a national UK multi-centre cohort study of patients who were hospitalised for COVID-19 and subsequently discharged.PHOSP-COVID was established to investigate the medium- and long-term sequelae of severe COVID-19 requiring hospitalisation, understand the underlying mechanisms of these sequelae, evaluate the medium- and long-term effects of COVID-19 treatments, and to serve as a platform to enable future studies, including clinical trials.Data collected covered a wide range of physical measures, biological samples, and Patient Reported Outcome Measures (PROMs).Participants could join the cohort either in Tier 1 only with remote data collection using hospital records, a PROMs app and postal saliva sample for DNA, or in Tier 2 where they were invited to attend two specific research visits for further data collection and biological research sampling. These research visits occurred at five (range 2-7) months and 12 (range 10-14) months post-discharge. Participants could also participate in specific nested studies (Tier 3) at selected sites.All participants were asked to consent to further follow-up for 25 years via linkage to their electronic healthcare records and to be re-contacted for further research.In total, 7935 participants were recruited from 83 UK sites: 5238 to Tier 1 and 2697 to Tier 2, between August 2020 and March 2022.Cohort data are held in a Trusted Research Environment and samples stored in a central biobank. Data and samples can be accessed upon request and subject to approvals
Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant
SARS-CoV-2 infections were rising during early summer 2021 in many countries associated with the Delta variant. We assessed RT-PCR swab-positivity in the REal-time Assessment of Community Transmission-1 (REACT-1) study in England. We observed sustained exponential growth with average doubling time (June-July 2021) of 25 days driven by complete replacement of Alpha variant by Delta, and by high prevalence at younger less-vaccinated ages. Unvaccinated people were three times more likely than double-vaccinated people to test positive. However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England. Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination
Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study
Introduction:
The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures.
Methods:
In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025.
Findings:
Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation.
Interpretation:
After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification
Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study
Background
The impact of COVID-19 on physical and mental health and employment after hospitalisation with acute disease is not well understood. The aim of this study was to determine the effects of COVID-19-related hospitalisation on health and employment, to identify factors associated with recovery, and to describe recovery phenotypes.
Methods
The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a multicentre, long-term follow-up study of adults (aged ≥18 years) discharged from hospital in the UK with a clinical diagnosis of COVID-19, involving an assessment between 2 and 7 months after discharge, including detailed recording of symptoms, and physiological and biochemical testing. Multivariable logistic regression was done for the primary outcome of patient-perceived recovery, with age, sex, ethnicity, body-mass index, comorbidities, and severity of acute illness as covariates. A post-hoc cluster analysis of outcomes for breathlessness, fatigue, mental health, cognitive impairment, and physical performance was done using the clustering large applications k-medoids approach. The study is registered on the ISRCTN Registry (ISRCTN10980107).
Findings
We report findings for 1077 patients discharged from hospital between March 5 and Nov 30, 2020, who underwent assessment at a median of 5·9 months (IQR 4·9–6·5) after discharge. Participants had a mean age of 58 years (SD 13); 384 (36%) were female, 710 (69%) were of white ethnicity, 288 (27%) had received mechanical ventilation, and 540 (50%) had at least two comorbidities. At follow-up, only 239 (29%) of 830 participants felt fully recovered, 158 (20%) of 806 had a new disability (assessed by the Washington Group Short Set on Functioning), and 124 (19%) of 641 experienced a health-related change in occupation. Factors associated with not recovering were female sex, middle age (40–59 years), two or more comorbidities, and more severe acute illness. The magnitude of the persistent health burden was substantial but only weakly associated with the severity of acute illness. Four clusters were identified with different severities of mental and physical health impairment (n=767): very severe (131 patients, 17%), severe (159, 21%), moderate along with cognitive impairment (127, 17%), and mild (350, 46%). Of the outcomes used in the cluster analysis, all were closely related except for cognitive impairment. Three (3%) of 113 patients in the very severe cluster, nine (7%) of 129 in the severe cluster, 36 (36%) of 99 in the moderate cluster, and 114 (43%) of 267 in the mild cluster reported feeling fully recovered. Persistently elevated serum C-reactive protein was positively associated with cluster severity.
Interpretation
We identified factors related to not recovering after hospital admission with COVID-19 at 6 months after discharge (eg, female sex, middle age, two or more comorbidities, and more acute severe illness), and four different recovery phenotypes. The severity of physical and mental health impairments were closely related, whereas cognitive health impairments were independent. In clinical care, a proactive approach is needed across the acute severity spectrum, with interdisciplinary working, wide access to COVID-19 holistic clinical services, and the potential to stratify care.
Funding
UK Research and Innovation and National Institute for Health Research