135 research outputs found

    Tunable Band Structure Effects on Ballistic Transport in Graphene Nanoribbons

    Full text link
    Graphene nanoribbons (GNR) in mutually perpendicular electric and magnetic fields are shown to exhibit dramatic changes in their band structure and electron transport properties. A strong electric field across the ribbon induces multiple chiral Dirac points, closing the semiconducting gap in armchair GNR's. A perpendicular magnetic field induces partially formed Landau levels as well as dispersive surface-bound states. Each of the applied fields on its own preserves the even symmetry Ek=EkE_{k} = E_{-k} of the subband dispersion. When applied together, they reverse the dispersion parity to be odd and gives Ee,k=Eh,kE_{e,k} = -E_{h,-k} and mix the electron and hole subbands within the energy range corresponding to the change in potential across the ribbon. This leads to oscillations of the ballistic conductance within this energy range

    The unusual protoplanetary disk around the T Tauri star ET Cha

    Get PDF
    We present new continuum and line observations, along with modelling, of the faint (6-8) Myr old T Tauri star ET Cha belonging to the eta Chamaeleontis cluster. We have acquired HERSCHEL/PACS photometric fluxes at 70 mic and 160 mic, as well as a detection of the [OI] 63 mic fine-structure line in emission, and derived upper limits for some other far-IR OI, CII, CO and o-H2O lines. The HERSCHEL data is complemented by new ANDICAM B-K photometry, new HST/COS and HST/STIS UV-observations, a non-detection of CO J=3-2 with APEX, re-analysis of a UCLES high-resolution optical spectrum showing forbidden emission lines like [OI] 6300A, [SII] 6731A and 6716A, and [NII] 6583A, and a compilation of existing broad-band photometric data. We used the thermo-chemical disk code ProDiMo and the Monte-Carlo radiative transfer code MCFOST to model the protoplanetary disk around ET Cha. Based on these models we can determine the disk dust mass Mdust = (2.E-8 - 5.E-8) Msun, whereas the total disk gas mass is found to be only little constrained, Mgas = (5.E-5 - 3.E-3) Msun. In the models, the disk extends from 0.022 AU (just outside of the co-rotation radius) to only about 10 AU. Larger disks are found to be inconsistent with the CO J=3-2 non-detection. The low velocity component of the [OI] 6300A emission line is consistent with being emitted from the inner disk. The model can also reproduce the line flux of H2 v=1-0 S(1) at 2.122 mic. An additional high-velocity component of the [OI] 6300A emission line, however, points to the existence of an additional jet/outflow of low velocity (40 - 65) km/s with mass loss rate ~1.E-9 Msun/yr. In relation to our low estimations of the disk mass, such a mass loss rate suggests a disk lifetime of only ~(0.05 - 3) Myr, substantially shorter than the cluster age. The evolutionary state of this unusual protoplanetary disk is discussed.Comment: accepted by Astronomy & Astrophysics (18 pages, 11 figures and 7 tables). Additional 9-page appendix with 6 figures, 3 tables and 37 equation

    Variability in the stellar initial mass function at low and high mass: 3-component IMF models

    Full text link
    Three component models of the IMF are made to consider possible origins for the observed relative variations in the numbers of brown dwarfs, solar-to-intermediate mass stars, and high mass stars. Three distinct physical processes are noted. The characteristic mass for most star formation is identified with the thermal Jeans mass in the molecular cloud core, and this presumably leads to the middle mass range by the usual collapse and accretion processes. Pre-stellar condensations (PSCs) observed in mm-wave continuum studies presumably form at this mass. Significantly smaller self-gravitating masses require much larger pressures and may arise following dynamical processes inside these PSCs, including disk formation, tight-cluster ejection, and photoevaporation as studied elsewhere, but also gravitational collapse of shocked gas in colliding PSCs. Significantly larger stellar masses form in relatively low abundance by normal cloud processes, possibly leading to steep IMFs in low-pressure field regions, but this mass range can be significantly extended in high pressure cloud cores by gravitationally-focussed gas accretion onto PSCs and by the coalescence of PSCs. These models suggest that the observed variations in brown dwarf, solar-to-intermediate mass, and high mass populations are the result of dynamical effects that depend on environmental density and velocity dispersion. They accommodate observations ranging from shallow IMFs in cluster cores to Salpeter IMFs in average clusters and whole galaxies to steep and even steeper IMFs in field and remote field regions. They also suggest how the top-heavy IMFs in some starburst clusters may originate and they explain bottom-heavy IMFs in low surface brightness galaxies.Comment: 10 pages, 2 figures, accepted by Monthly Notices of the Royal Astronomical Societ

    Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context

    Get PDF
    Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated o¡enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ‘compositional’ and ‘contextual’ explanations of cross-national di¡erences have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the e¡ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) di¡erences. Furthermore, crossnational variation in victimization rates is not only shaped by di¡erences in national context, but also by varying composition. More speci¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.

    Manganese nanoclusters and nanowires on GaAs surfaces

    Full text link
    We have computed the local magnetic moments of manganese and neighboring arsenic for various cluster configurations on the (001) surface of GaAs bulk crystal using a cluster of 512 atoms. We obtained for manganese a substantial local magnetic moment of 3.66 Bohr magnetons for all cases considered. The induced magnetic moment of arsenic is less than that of manganese by two orders of magnitude and falls off drastically beyond nearest neighbor distance. A small amount of charge is transferred from the manganese to arsenic. The possibility of a spin polarized wire channel on the arsenic layer below the surface is suggested.Comment: 17 pages (includes 2 tables and 3 figures

    The JCMT BISTRO Survey: The Distribution of Magnetic Field Strengths toward the OMC-1 Region

    Get PDF
    Measurement of magnetic field strengths in a molecular cloud is essential for determining the criticality of magnetic support against gravitational collapse. In this paper, as part of the JCMT BISTRO survey, we suggest a new application of the Davis–Chandrasekhar–Fermi (DCF) method to estimate the distribution of magnetic field strengths in the OMC-1 region. We use observations of dust polarization emission at 450 and 850 μm, and C18O (3–2) spectral line data obtained with the JCMT. We estimate the volume density, the velocity dispersion, and the polarization angle dispersion in a box, 40'' × 40'' (5×5 pixels), which moves over the OMC-1 region. By substituting three quantities in each box with the DCF method, we get magnetic field strengths over the OMC-1 region. We note that there are very large uncertainties in the inferred field strengths, as discussed in detail in this paper. The field strengths vary from 0.8 to 26.4 mG, and their mean value is about 6 mG. Additionally, we obtain maps of the mass-to-flux ratio in units of a critical value and the Alfvén Mach number. The central parts of the BN–KL and South (S) clumps in the OMC-1 region are magnetically supercritical, so the magnetic field cannot support the clumps against gravitational collapse. However, the outer parts of the region are magnetically subcritical. The mean Alfvén Mach number is about 0.4 over the region, which implies that the magnetic pressure exceeds the turbulent pressure in the OMC-1 region

    The JCMT BISTRO Survey: Revealing the diverse magnetic field morphologies in Taurus dense cores with sensitive sub-millimeter polarimetry

    Get PDF
    © 2021. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/We have obtained sensitive dust continuum polarization observations at 850 μ\mum in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope (JCMT), as part of the BISTRO (B-fields in STar-forming Region Observations) survey. These observations allow us to probe magnetic field (B-field) at high spatial resolution (\sim2000 au or \sim0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis-Chandrasekhar-Fermi method, we estimate the B-field strengths in K04166, K04169, and Miz-8b to be 38±\pm14 μ\muG, 44±\pm16 μ\muG, and 12±\pm5 μ\muG, respectively. These cores show distinct mean B-field orientations. B-field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B-field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. B-field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B-field, and not well-correlated with other axes. In contrast, Miz-8b exhibits disordered B-field which show no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B-field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B-field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux.Peer reviewe

    The JCMT BISTRO Survey: A Spiral Magnetic Field in a Hub-filament Structure, Monoceros R2

    Get PDF
    We present and analyze observations of polarized dust emission at 850 μm toward the central 1 × 1 pc hub-filament structure of Monoceros R2 (Mon R2). The data are obtained with SCUBA-2/POL-2 on the James Clerk Maxwell Telescope (JCMT) as part of the B-fields in Star-forming Region Observations survey. The orientations of the magnetic field follow the spiral structure of Mon R2, which are well described by an axisymmetric magnetic field model. We estimate the turbulent component of the magnetic field using the angle difference between our observations and the best-fit model of the underlying large-scale mean magnetic field. This estimate is used to calculate the magnetic field strength using the Davis–Chandrasekhar–Fermi method, for which we also obtain the distribution of volume density and velocity dispersion using a column density map derived from Herschel data and the C18O (J = 3 - 2) data taken with HARP on the JCMT, respectively. We make maps of magnetic field strengths and mass-to-flux ratios, finding that magnetic field strengths vary from 0.02 to 3.64 mG with a mean value of 1.0 ± 0.06 mG, and the mean critical mass-to-flux ratio is 0.47 ± 0.02. Additionally, the mean Alfvén Mach number is 0.35 ± 0.01. This suggests that, in Mon R2, the magnetic fields provide resistance against large-scale gravitational collapse, and the magnetic pressure exceeds the turbulent pressure. We also investigate the properties of each filament in Mon R2. Most of the filaments are aligned along the magnetic field direction and are magnetically subcritical

    First BISTRO Observations of the Dark Cloud Taurus L1495A-B10: The Role of the Magnetic Field in the Earliest Stages of Low-mass Star Formation

    Get PDF
    We present BISTRO Survey 850 μm dust emission polarization observations of the L1495A-B10 region of the Taurus molecular cloud, taken at the James Clerk Maxwell Telescope (JCMT). We observe a roughly triangular network of dense filaments. We detect nine of the dense starless cores embedded within these filaments in polarization, finding that the plane-of-sky orientation of the core-scale magnetic field lies roughly perpendicular to the filaments in almost all cases. We also find that the large-scale magnetic field orientation measured by Planck is not correlated with any of the core or filament structures, except in the case of the lowest-density core. We propose a scenario for early prestellar evolution that is both an extension to, and consistent with, previous models, introducing an additional evolutionary transitional stage between field-dominated and matter-dominated evolution, observed here for the first time. In this scenario, the cloud collapses first to a sheet-like structure. Uniquely, we appear to be seeing this sheet almost face on. The sheet fragments into filaments, which in turn form cores. However, the material must reach a certain critical density before the evolution changes from being field dominated to being matter dominated. We measure the sheet surface density and the magnetic field strength at that transition for the first time and show consistency with an analytical prediction that had previously gone untested for over 50 yr

    The JCMT BISTRO Survey: A Spiral Magnetic Field in a Hub-filament Structure, Monoceros R2

    Get PDF
    We present and analyze observations of polarized dust emission at 850 μm toward the central 1 7 1 pc hub-filament structure of Monoceros R2 (Mon R2). The data are obtained with SCUBA-2/POL-2 on the James Clerk Maxwell Telescope (JCMT) as part of the B-fields in Star-forming Region Observations survey. The orientations of the magnetic field follow the spiral structure of Mon R2, which are well described by an axisymmetric magnetic field model. We estimate the turbulent component of the magnetic field using the angle difference between our observations and the best-fit model of the underlying large-scale mean magnetic field. This estimate is used to calculate the magnetic field strength using the Davis–Chandrasekhar–Fermi method, for which we also obtain the distribution of volume density and velocity dispersion using a column density map derived from Herschel data and the C18O (J = 3 - 2) data taken with HARP on the JCMT, respectively. We make maps of magnetic field strengths and mass-to-flux ratios, finding that magnetic field strengths vary from 0.02 to 3.64 mG with a mean value of 1.0 \ub1 0.06 mG, and the mean critical mass-to-flux ratio is 0.47 \ub1 0.02. Additionally, the mean Alfv\ue9n Mach number is 0.35 \ub1 0.01. This suggests that, in Mon R2, the magnetic fields provide resistance against large-scale gravitational collapse, and the magnetic pressure exceeds the turbulent pressure. We also investigate the properties of each filament in Mon R2. Most of the filaments are aligned along the magnetic field direction and are magnetically subcritical
    corecore