1,819 research outputs found

    Molecular epidemiology and comparative genomics of carbapenemase-producing Escherichia coli isolates from 19 tertiary hospitals in China from 2019 to 2020

    Get PDF
    BackgroundThe clinical use of carbapenems is facing challenges due to increased carbapenemase-producing Escherichia coli (CP-EC) infections over the past decade. Meanwhile, whole-genome sequencing (WGS) is an important method for bacterial epidemiological research. We aim to provide more gene-based surveys to explore the genomics and occurrence of CP-EC in China.MethodsA total of 780 Escherichia coli isolates were collected by the China Antimicrobial Resistance Surveillance Trial (CARST) from 2019 to 2020. An antibacterial susceptibility test was performed by using the agar dilution method. CP-EC were detected by the modified carbapenem inactivation method (mCIM), EDTA-modified carbapenem inactivation method (eCIM), and polymerase chain reaction (PCR). Homology analysis was performed by multilocus sequence typing (MLST). A conjugation experiment was performed to verify the transferability of plasmids carrying carbapenemase genes. WGS was conducted to explore the gene-environment of the carbapenemase gene.ResultOf the 780 Escherichia coli isolates, 31 isolates were insensitive to carbapenem with a rate of 4%. Among them, 13 CP-EC isolates had transferability of the blaNDM gene. These isolates belonged to nine distinct sequence types (STs), with some correlation. We found that two (2/13, 15.4%) of the CP-EC isolates that were collected from blood specimens were highly pathogenic and also showed high transferability of the blaNDM gene. In addition, eight (8/13, 61.5%) of the CP-EC isolates were found to be multidrug-resistant.ConclusionWith the increasing use of carbapenem, CP-EC isolates accounted for nearly half of the total carbapenem-insensitive Escherichia coli isolates. Our findings highlight the urgent need to pay attention to CP-EC isolates in bloodstream infections and ESBL-producing CP-EC isolates. Based on the One Health concept, we suggest various measures, including the development of bacterial vaccines, antibiotic management, and establishment of better medical environments, to avoid the outbreak of CP-EC

    Highly hydrated paramagnetic amorphous calcium carbonate nanoclusters as a superior MRI contrast agent

    Get PDF
    Amorphous calcium carbonate plays a key role as transient precursor in the early stages of biogenic calcium carbonate formation in nature. However, due to its instability in aqueous solution, there is still rare success to utilize amorphous calcium carbonate in biomedicine. Here, we report the mutual effect between paramagnetic gadolinium ions and amorphous calcium carbonate, resulting in ultrafine paramagnetic amorphous carbonate nanoclusters in the presence of both gadolinium occluded highly hydrated carbonate-like environment and poly(acrylic acid). Gadolinium is confirmed to enhance the water content in amorphous calcium carbonate, and the high water content of amorphous carbonate nanoclusters contributes to the much enhanced magnetic resonance imaging contrast efficiency compared with commercially available gadolinium-based contrast agents. Furthermore, the enhanced T1 weighted magnetic resonance imaging performance and biocompatibility of amorphous carbonate nanoclusters are further evaluated in various animals including rat, rabbit and beagle dog, in combination with promising safety in vivo. Overall, exceptionally facile mass-productive amorphous carbonate nanoclusters exhibit superb imaging performance and impressive stability, which provides a promising strategy to design magnetic resonance contrast agent

    ACCESS III: The Nature of Star Formation in the Shapley Supercluster

    Full text link
    We present a joint analysis of panoramic Spitzer/MIPS mid-infrared and GALEX ultraviolet imaging of the Shapley supercluster at z=0.048. Combining this with spectra of 814 supercluster members and 1.4GHz radio continuum maps, this represents the largest complete census of star-formation (both obscured and unobscured) in local cluster galaxies to date, reaching SFRs~0.02Msun/yr. We take advantage of this comprehensive panchromatic dataset to perform a detailed analysis of the nature of star formation in cluster galaxies, using several quite independent diagnostics of the quantity and intensity of star formation to develop a coherent view of the types of star formation within cluster galaxies. We observe a robust bimodality in the infrared (f_24/f_K) galaxy colours, which we are able to identify as another manifestation of the broad split into star-forming spiral and passive elliptical galaxy populations seen in UV-optical surveys. This diagnostic also allows the identification of galaxies in the process of having their star formation quenched as the infrared analogue to the UV "green valley" population. The bulk of supercluster galaxies on the star-forming sequence have specific-SFRs consistent with local field specific-SFR-M* relations, and form a tight FIR-radio correlation confirming that their FIR emission is due to star formation. We show that 85% of the global SFR is quiescent star formation within spiral disks, as manifest by the observed sequence in the IRX-beta relation being significantly offset from the starburst relation of Kong et al. (2004), while their FIR-radio colours indicate dust heated by low-intensity star formation. Just 15% of the global SFR is due to nuclear starbursts. The vast majority of star formation seen in cluster galaxies comes from normal infalling spirals who have yet to be affected by the cluster environment.Comment: 17 pages, 9 figures. Accepted for publication in MNRA

    Genome-wide association study for acute otitis media in children identifies FNDC1 as disease contributing gene

    Get PDF
    Acute otitis media (AOM) is among the most common pediatric diseases, and the most frequent reason for antibiotic treatment in children. Risk of AOM is dependent on environmental and host factors, as well as a significant genetic component. We identify genome-wide significance at a locus on 6q25.3 (rs2932989, Pmeta=2.15 × 10-09), and show that the associated variants are correlated with the methylation status of the FNDC1 gene (cg05678571, P=1.43 × 10-06), and further show it is an eQTL for FNDC1 (P=9.3 × 10-05). The mouse homologue, Fndc1, is expressed in middle ear tissue and its expression is upregulated upon lipopolysaccharide treatment. In this first GWAS of AOM and the largest OM genetic study to date, we identify the first genome-wide significant locus associated with AOM

    Effect of Interface Structure on Mechanical Properties of Advanced Composite Materials

    Get PDF
    This paper deals with the effect of interface structures on the mechanical properties of fiber reinforced composite materials. First, the background of research, development and applications on hybrid composite materials is introduced. Second, metal/polymer composite bonded structures are discussed. Then, the rationale is given for nanostructuring the interface in composite materials and structures by introducing nanoscale features such as nanopores and nanofibers. The effects of modifying matrices and nano-architecturing interfaces on the mechanical properties of nanocomposite materials are examined. A nonlinear damage model for characterizing the deformation behavior of polymeric nanocomposites is presented and the application of this model to carbon nanotube-reinforced and reactive graphite nanotube-reinforced epoxy composite materials is shown

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore