578 research outputs found

    Defending flash worms : contemporary detection schemes and a hierarchical model

    Get PDF

    Current Challenges in Detecting Food Allergens by Shotgun and Targeted Proteomic Approaches: A Case Study on Traces of Peanut Allergens in Baked Cookies

    Get PDF
    There is a need for selective and sensitive methods to detect the presence of food allergens at trace levels in highly processed food products. In this work, a combination of non-targeted and targeted proteomics approaches are used to illustrate the difficulties encountered in the detection of the major peanut allergens Ara h 1, Ara h 2 and Ara h 3 from a representative processed food matrix. Shotgun proteomics was employed for selection of the proteotypic peptides for targeted approaches via selective reaction monitoring. Peanut presence through detection of the proteotypic Ara h 3/4 peptides AHVQVVDSNGNR (m/z 432.5, 3+) and SPDIYNPQAGSLK (m/z 695.4, 2+) was confirmed and the developed method was able to detect peanut presence at trace levels (≥10 μg peanut g−1 matrix) in baked cookies

    A Novel Single-Dose Dengue Subunit Vaccine Induces Memory Immune Responses

    Get PDF
    To protect against dengue viral infection, a novel lipidated dengue subunit vaccine was rationally designed to contain the consensus amino acid sequences derived from four serotypes of dengue viruses. We found that the lipidated consensus dengue virus envelope protein domain III (LcED III) is capable of activating antigen-presenting cells and enhancing cellular and humoral immune responses. A single-dose of LcED III immunization in mice without extra adjuvant formulation is sufficient to elicit neutralizing antibodies against all four serotypes of dengue viruses. In addition, strong memory responses were elicited in mice immunized with a single-dose of LcED III. Quick, anamnestic neutralizing antibody responses to a live dengue virus challenge were elicited at week 28 post-immunization. These results demonstrate the promising possibility of a future successful tetravalent vaccine against dengue viral infections that utilizes one-dose vaccination with LcED III

    Observation of Parametric Instability in Advanced LIGO

    Get PDF
    Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this work we describe the first observation of parametric instability in an Advanced LIGO detector, and the means by which it has been removed as a barrier to progress

    Recombinant Trimeric HA Protein Immunogenicity of H5N1 Avian Influenza Viruses and Their Combined Use with Inactivated or Adenovirus Vaccines

    Get PDF
    [[abstract]]Background:The highly pathogenic avian influenza (HPAI) H5N1 virus continues to cause disease in poultry and humans. The hemagglutinin (HA) envelope protein is the primary target for subunit vaccine development.Methodology/Principal Findings:We used baculovirus-insect cell expression to obtain trimeric recombinant HA (rHA) proteins from two HPAI H5N1 viruses. We investigated trimeric rHA protein immunogenicity in mice via immunizations, and found that the highest levels of neutralizing antibodies resulted from coupling with a PELC/CpG adjuvant. We also found that the combined use of trimeric rHA proteins with (a) an inactivated H5N1 vaccine virus, or (b) a recombinant adenovirus encoding full-length HA sequences for prime-boost immunization, further improved antibody responses against homologous and heterologous H5N1 virus strains. Data from cross-clade prime-boost immunization regimens indicate that sequential immunization with different clade HA antigens increased antibody responses in terms of total IgG level and neutralizing antibody titers.Conclusion/Significance:Our findings suggest that the use of trimeric rHA in prime-boost vaccine regimens represents an alternative strategy for recombinant H5N1 vaccine development

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Dengue-1 Envelope Protein Domain III along with PELC and CpG Oligodeoxynucleotides Synergistically Enhances Immune Responses

    Get PDF
    The major weaknesses of subunit vaccines are their low immunogenicity and poor efficacy. Adjuvants can help to overcome some of these inherent defects with subunit vaccines. Here, we evaluated the efficacy of the newly developed water-in-oil-in-water multiphase emulsion system, termed PELC, in potentiating the protective capacity of dengue-1 envelope protein domain III. Unlike aluminum phosphate, dengue-1 envelope protein domain III formulated with PELC plus CpG oligodeoxynucleotides induced neutralizing antibodies against dengue-1 virus and increased the splenocyte secretion of IFN-γ after in vitro re-stimulation. The induced antibodies contained both the IgG1 and IgG2a subclasses. A rapid anamnestic neutralizing antibody response against a live dengue virus challenge was elicited at week 26 after the first immunization. These results demonstrate that PELC plus CpG oligodeoxynucleotides broaden the dengue-1 envelope protein domain III-specific immune responses. PELC plus CpG oligodeoxynucleotides is a promising adjuvant for recombinant protein based vaccination against dengue virus

    First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

    Get PDF
    International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0

    Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10−23/Hz−−−√ was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30  M⊙ could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914

    Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817

    No full text
    In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz
    corecore