15 research outputs found

    New insight into the microbiome, resistome, and mobilome on the dental waste water in the context of heavy metal environment

    Get PDF
    ObjectHospital sewage have been associated with incorporation of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) into microbes, which is considered as a key indicator for the spread of antimicrobial resistance (AMR). The compositions of dental waste water (DWW) contain heavy metals, the evolution of AMR and its effects on the water environment in the context of heavy metal environment have not been seriously investigated. Thus, our major aims were to elucidate the evolution of AMR in DWW.MethodsDWW samples were collected from a major dental department. The presence of microbial communities, ARGs, and MGEs in untreated and treated (by filter membrane and ozone) samples were analyzed using metagenomics and bioinformatic methods.ResultsDWW-associated resistomes included 1,208 types of ARGs, belonging to 29 antibiotic types/subtypes. The most abundant types/subtypes were ARGs of multidrug resistance and of antibiotics that were frequently used in the clinical practice. Pseudomonas putida, Pseudomonas aeruginosa, Chryseobacterium indologenes, Sphingomonas laterariae were the main bacteria which hosted these ARGs. Mobilomes in DWW consisted of 93 MGE subtypes which belonged to 8 MGE types. Transposases were the most frequently detected MGEs which formed networks of communications. For example, ISCrsp1 and tnpA.5/4/11 were the main transposases located in the central hubs of a network. These significant associations between ARGs and MGEs revealed the strong potential of ARGs transmission towards development of antimicrobial-resistant (AMR) bacteria. On the other hand, treatment of DWW using membranes and ozone was only effective in removing minor species of bacteria and types of ARGs and MGEs.ConclusionDWW contained abundant ARGs, and MGEs, which contributed to the occurrence and spread of AMR bacteria. Consequently, DWW would seriously increase environmental health concerns which may be different but have been well-documented from hospital waste waters

    Cellular, circuit and transcriptional framework for modulation of itch in the central amygdala

    Get PDF
    Itch is an unpleasant sensation that elicits robust scratching and aversive experience. However, the identity of the cells and neural circuits that organize this information remains elusive. Here, we show the necessity and sufficiency of chloroquine-activated neurons in the central amygdala (CeA) for both itch sensation and associated aversion. Further, we show that chloroquine-activated CeA neurons play important roles in itch-related comorbidities, including anxiety-like behaviors, but not in some aversive and appetitive behaviors previously ascribed to CeA neurons. RNA-sequencing of chloroquine-activated CeA neurons identified several differentially expressed genes as well as potential key signaling pathways in regulating pruritis. Finally, viral tracing experiments demonstrate that these neurons send projections to the ventral periaqueductal gray that are critical in modulation of itch. These findings reveal a cellular and circuit signature of CeA neurons orchestrating behavioral and affective responses to pruritus in mice

    Spatiotemporal characteristics and influencing factors of the coupling coordinated development of production-living-ecology system in China

    No full text
    The coupling coordinated development of production-living-ecology (PLE) system is of great importance to sustainable development. However, the influencing factors for the coupling coordinated development of PLE system remain poorly understood, especially in terms of spatial and temporal differences among the main factors. In this study, we chose the panel data of 295 China’s prefecture-level cities from 2007 to 2019 to explore the spatiotemporal characteristics and influencing factors of the coupling coordinated development of PLE system using coupling model, spatial regression model, GTWR model and K-means clustering method. From our results, the coupling index of PLE system showed an increasing trend with the spatial agglomeration. Social investment, terrain condition, infrastructure, and internet development are main factors affecting the coupling coordinated development of PLE system, and different influencing factors have different effects in different regions and different periods. The targeted policies should be combined with the effects of main influencing factors in different regions and different periods. We hope that this study can provide a valuable reference for the coupling coordination of PLE system and sustainable development

    Refractory petrochemical wastewater treatment by K2S2O8 assisted photocatalysis

    No full text
    The K2S2O8 assisted photocatalytic system was applied for treating refractory petrochemical wastewater. Co-TiO2/zeolite catalyst synthesized by sol-gel method was demonstrated to possess a good activity towards mineralization of the refractory petrochemical wastewater in the K2S2O8 assisted photocatalytic system. Orthogonal design was employed to optimize the reaction parameters, according to the results, K2S2O8 dosage was the most prominent impact factor. More experiments were conducted to further enhance the COD removal efficiency. In consideration of both efficiency and costs, the petrochemical wastewater was treated in the K2S2O8 assisted photocatalytic system at pH 4, K2S2O8 dosage 2.03 g/L, catalyst amount 250 g/L with irradiation by 1 lamp and aeration. The COD removal efficiency reached up to 93.4% with a rate constant of 1.14 × 10−2 per min, and Co-TiO2/zeolite showed a good stability towards the K2S2O8 assisted photocatalytic degradation of petrochemical wastewater. Keywords: Refractory petrochemical wastewater, K2S2O8 assisted photocatalysis, Co-TiO2/zeolite, Sulfate radica

    Gene Expression Analysis of Human Papillomavirus-Associated Colorectal Carcinoma

    No full text
    Purpose. Human papillomavirus (HPV) antigens had been found in colorectal cancer (CRC) tissue, but little evidence demonstrates the association of HPV with oncogene mutations in CRC. We aim to elucidate the mutated genes that link HPV infection and CRC carcinogenesis. Methods. Cancerous and adjacent noncancerous tissues were obtained from CRC patients. HPV antigen was measured by using the immunohistochemical (IHC) technique. The differentially expressed genes (DEGs) in HPV-positive and HPV-negative tumor tissues were measured by using TaqMan Array Plates. The target genes were validated with the qPCR method. Results. 15 (31.9%) cases of CRC patients were observed to be HPV positive, in which HPV antigen was expressed in most tumor tissues rather than in adjacent noncancerous tissues. With TaqMan Array Plates analyses, we found that 39 differentially expressed genes (DEGs) were upregulated, while 17 DEGs were downregulated in HPV-positive CRC tissues compared with HPV-negative tissues. Four DEGs (MMP-7, MYC, WNT-5A, and AXIN2) were upregulated in tumor vs. normal tissues, or adenoma vs. normal tissue in TCGA, which was overlapped with our data. In the confirmation test, MMP-7, MYC, WNT-5A, and AXIN2 were upregulated in cancerous tissue compared with adjacent noncancerous tissue. MYC, WNT-5A, and AXIN2 were shown to be upregulated in HPV-positive CRC tissues when compared to HPV-negative tissues. Conclusion. HPV-encoding genome may integrate into the tumor genomes that involved in multiple signaling pathways. Further genomic and proteomic investigation is necessary for obtaining a more comprehensive knowledge of signaling pathways associated with the CRC carcinogenesis

    Data_Sheet_1_New insight into the microbiome, resistome, and mobilome on the dental waste water in the context of heavy metal environment.docx

    No full text
    ObjectHospital sewage have been associated with incorporation of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) into microbes, which is considered as a key indicator for the spread of antimicrobial resistance (AMR). The compositions of dental waste water (DWW) contain heavy metals, the evolution of AMR and its effects on the water environment in the context of heavy metal environment have not been seriously investigated. Thus, our major aims were to elucidate the evolution of AMR in DWW.MethodsDWW samples were collected from a major dental department. The presence of microbial communities, ARGs, and MGEs in untreated and treated (by filter membrane and ozone) samples were analyzed using metagenomics and bioinformatic methods.ResultsDWW-associated resistomes included 1,208 types of ARGs, belonging to 29 antibiotic types/subtypes. The most abundant types/subtypes were ARGs of multidrug resistance and of antibiotics that were frequently used in the clinical practice. Pseudomonas putida, Pseudomonas aeruginosa, Chryseobacterium indologenes, Sphingomonas laterariae were the main bacteria which hosted these ARGs. Mobilomes in DWW consisted of 93 MGE subtypes which belonged to 8 MGE types. Transposases were the most frequently detected MGEs which formed networks of communications. For example, ISCrsp1 and tnpA.5/4/11 were the main transposases located in the central hubs of a network. These significant associations between ARGs and MGEs revealed the strong potential of ARGs transmission towards development of antimicrobial-resistant (AMR) bacteria. On the other hand, treatment of DWW using membranes and ozone was only effective in removing minor species of bacteria and types of ARGs and MGEs.ConclusionDWW contained abundant ARGs, and MGEs, which contributed to the occurrence and spread of AMR bacteria. Consequently, DWW would seriously increase environmental health concerns which may be different but have been well-documented from hospital waste waters.</p
    corecore