96 research outputs found

    Neutron-induced fission cross sections of Th 232 and U 233 up to 1 GeV using parallel plate avalanche counters at the CERN n_TOF facility

    Get PDF
    The neutron-induced fission cross sections of 232 Th and 233 U were measured relative to 235 U in a wide neutron energy range up to 1 GeV (and from fission threshold in the case of 232 Th , and from 0.7 eV in case of 233 U ), using the white-spectrum neutron source at the CERN Neutron Time-of-Flight (n_TOF) facility. Parallel plate avalanche counters (PPACs) were used, installed at the Experimental Area 1 (EAR1), which is located at 185 m from the neutron spallation target. The anisotropic emission of fission fragments were taken into account in the detection efficiency by using, in the case of 233 U , previous results available in EXFOR, whereas in the case of 232 Th these data were obtained from our measurement, using PPACs and targets tilted 45 ° with respect to the neutron beam direction. Finally, the obtained results are compared with past measurements and major evaluated nuclear data libraries. Calculations using the high-energy reaction models INCL + + and ABLA07 were performed and some of their parameters were modified to reproduce the experimental results. At high energies, where no other neutron data exist, our results are compared with experimental data on proton-induced fission. Moreover, the dependence of the fission cross section at 1 GeV with the fissility parameter of the target nucleus is studied by combining those ( p , f ) data with our ( n , f ) data on 232 Th and 233 U and on other isotopes studied earlier at n_TOF using the same experimental setup.Peer ReviewedArticle escrit per 81 autors/autores: D. TarrĂ­o , L. Tassan-Got, I. Duran, L. S. Leong, C. Paradela, L. Audouin, E. Leal-Cidoncha, C. Le Naour, M. Caamaño, A. Ventura, S. Altstadt, J. Andrzejewski, M. Barbagallo, V. BĂ©cares, F. BecvĂĄ ˇ ˇr,F. Belloni, E. Berthoumieux, J. Billowes, V. Boccone, D. Bosnar, M. Brugger, M. Calviani, F. Calviño, D. Cano-Ott, C. Carrapiço, F. Cerutti, E. Chiaveri,M. Chin, N. Colonna, G. CortĂ©s, M. A. CortĂ©s-Giraldo, M. Diakaki, C. Domingo-Pardo, N. Dzysiuk, C. Eleftheriadis, A. Ferrari, K. Fraval, S. Ganesan, A. R. GarcĂ­a, G. Giubrone, M. B. GĂłmez-Hornillos, I. F. Gonçalves, E. GonzĂĄlez-Romero,E. Griesmayer, C. Guerrero, F. Gunsing, P. Gurusamy, D. G. Jenkins, E. Jericha, Y. Kadi, F. KĂ€ppeler,† D. Karadimos, P. Koehler, M. Kokkoris, M. Krticka, J. Kroll, C. Langer, C. Lederer, H. Leeb, R. Losito, A. Manousos, J. Marganiec, T. MartĂ­nez, C. Massimi, P. F. Mastinu,M. Mastromarco, M. Meaze, E. Mendoza, A. Mengoni, P. M. Milazzo, F. Mingrone, M. Mirea,,† W. Mondalaers, A. Pavlik, J. Perkowski, A. Plompen, J. Praena, J. M. Quesada, T. Rauscher, R. Reifarth, A. Riego, M. S. Robles, F. Roman, C. Rubbia, R. Sarmento, P. Schillebeeckx,S. Schmidt, G. Tagliente, J. L. Tain, A. Tsinganis, S. Valenta, G. Vannini, V. Variale, P. Vaz, R. Versaci, M. J. Vermeulen, V. Vlachoudis, R. Vlastou,A. Wallner, T. Ware, M. Weigand, C. Weiß, T. J. Wright, P. ĆœugecPostprint (published version

    Neutron cross-sections for advanced nuclear systems : The n-TOF project at CERN

    Get PDF
    © Owned by the authors, published by EDP Sciences, 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n-TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.Peer reviewedFinal Published versio

    238U(n, Îł) reaction cross section measurement with C 6D6 detectors at the n-TOF CERN facility

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe radiative capture cross section of 238U is very important for the developing of new reactor technologies and the safety of existing ones. Here the preliminary results of the 238U(n,Îł) cross section measurement performed at n-TOF with C6D6 scintillation detectors are presented, paying particular attention to data reduction and background subtraction.Peer reviewe

    High accuracy 234U(n,f) cross section in the resonance energy region

    Get PDF
    New results are presented of the 234U neutron-induced fission cross section, obtained with high accuracy in the resonance region by means of two methods using the 235U(n,f) as reference. The recent evaluation of the 235U(n,f) obtained with SAMMY by L. C. Leal et al. (these Proceedings), based on previous n-TOF data [1], has been used to calculate the 234U(n,f) cross section through the 234U/235U ratio, being here compared with the results obtained by using the n-TOF neutron flux

    The nucleosynthesis of heavy elements in Stars : The key isotope 25Mg

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedWe have measured the radiative neutron-capture cross section and the total neutron-induced cross section of one of the most important isotopes for the s process, the 25Mg. The measurements have been carried out at the neutron time-of-flight facilities n-TOF at CERN (Switzerland) and GELINA installed at the EC-JRC-IRMM (Belgium). The cross sections as a function of neutron energy have been measured up to approximately 300 keV, covering the energy region of interest to the s process. The data analysis is ongoing and preliminary results show the potential relevance for the s process.Peer reviewe

    Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF

    Get PDF
    The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards

    Neutron spectroscopy of 26Mg states : Constraining the stellar neutron source 22Ne(α,n)25Mg

    Get PDF
    This work reports on accurate, high-resolution measurements of the 25Mg(n,Îł)26Mg and 25Mg(n,tot) cross sections in the neutron energy range from thermal to about 300 keV, leading to a significantly improved 25Mg(n,Îł)26Mg parametrization. The relevant resonances for n+25Mg were characterized from a combined R-matrix analysis of the experimental data. This resulted in an unambiguous spin/parity assignment of the corresponding excited states in 26Mg. With this information experimental upper limits of the reaction rates for 22Ne(α,n)25Mg and 22Ne(α,Îł)26Mg were established, potentially leading to a significantly higher (α,n)/(α,Îł) ratio than previously evaluated. The impact of these results has been studied for stellar models in the mass range 2 to 25 M⊙

    GEANT4 simulation of the neutron background of the C6D6 set-up for capture studies at n_TOF

    Get PDF
    The neutron sensitivity of the C6D6 detector setup used at n_TOF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n_TOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a natC sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured natC yield has been discovered, which prevents the use of natC data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron background for two different samples are demonstrating the important role of accurate simulations of the neutron background in capture cross-section measurements

    Fission Fragment Angular Distribution measurements of 235U and 238U at CERN n_TOF facility

    Get PDF
    Neutron-induced fission cross sections of 238^{238}U and 235^{235}U are used as standards in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to experimentally determine other neutron reaction cross sections. Therefore, the detection efficiency should be corrected by using the angular distribution of the fission fragments (FFAD), which are barely known above 20 MeV. In addition, the angular distribution of the fragments produced in the fission of highly excited and deformed nuclei is an important observable to investigate the nuclear fission process. In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs) has been developed and successfully used at the CERN-n_TOF facility. In this work, we present the preliminary results on the analysis of new 235^{235}U(n,f) and 238^{238}U(n,f) data in the extended energy range up to 200 MeV compared to the existing experimental data
    • 

    corecore