777 research outputs found

    An improved method for estimating the neutron background in measurements of neutron capture reactions

    Full text link
    The relation between the neutron background in neutron capture measurements and the neutron sensitivity related to the experimental setup is examined. It is pointed out that a proper estimate of the neutron background may only be obtained by means of dedicated simulations taking into account the full framework of the neutron-induced reactions and their complete temporal evolution. No other presently available method seems to provide reliable results, in particular under the capture resonances. An improved neutron background estimation technique is proposed, the main improvement regarding the treatment of the neutron sensitivity, taking into account the temporal evolution of the neutron-induced reactions. The technique is complemented by an advanced data analysis procedure based on relativistic kinematics of neutron scattering. The analysis procedure allows for the calculation of the neutron background in capture measurements, without requiring the time-consuming simulations to be adapted to each particular sample. A suggestion is made on how to improve the neutron background estimates if neutron background simulations are not available.Comment: 11 pages, 9 figure

    High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN

    Get PDF
    A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.Comisión Europea FP7/2007-2011 No.605203Centro Nacional de Ciencias de Polonia UMO- 2012/04/M/ST2/00700Centro Nacional de Ciencias de Polonia UMO-2016/22/M/ST2/00183Fundación de Ciencia Croata No. 168

    The neutron time-of-flight facility n-TOF at CERN: Phase II

    Get PDF
    Neutron-induced reactions are studied at the neutron time-of-flight facility n-TOF at CERN. The facility uses 6∼ns wide pulses of 20 GeV/c protons impinging on a lead spallation target. The large neutron energy range and the high instantaneous neutron flux combined with high resolution are among the key characteristics of the facility. After a first phase of data taking during the period 2001-2004, the facility has been refurbished with an upgraded spallation target and cooling system for a second phase of data taking which started in 2009. Since 2010, the experimental area at 185 m where the neutron beam arrives, has been modified into a worksector of type A, allowing the extension of the physics program to include neutron-induced reactions on radioactive isotopes

    Block-Cipher-Based Tree Hashing

    Get PDF
    First of all we take a thorough look at an error in a paper by Daemen et al. (ToSC 2018) which looks at minimal requirements for tree-based hashing based on multiple primitives, including block ciphers. This reveals that the error is more fundamental than previously shown by Gunsing et al. (ToSC 2020), which is mainly interested in its effect on the security bounds. It turns out that the cause for the error is due to an essential oversight in the interaction between the different oracles used in the indifferentiability proofs. In essence, it reduces the claim from the normal indifferentiability setting to the weaker sequential indifferentiability one. As a matter of fact, this error appeared in multiple earlier indifferentiability papers, including the optimal indifferentiability of the sum of permutations (EUROCRYPT 2018) and the recent ABR+ construction (EUROCRYPT 2021). We discuss in detail how this oversight is caused and how it can be avoided. We next demonstrate how the negative effects on the security bound of the construction by Daemen et al. can be resolved. Instead of only allowing a truncated output, we generalize the construction to allow for any finalization function and investigate the security of this for five different types of finalization. Our findings, among others, show that the security of the SHA-2 mode does not degrade if the feed-forward is dropped and that the modern BLAKE3 construction is secure in principle but that its use of the extendable output requires its counter used for random access to be public. Finally, we introduce the tree sponge, a generalization of the sequential sponge construction with parallel absorbing and squeezing

    Collapseability of Tree Hashes

    Get PDF
    One oft-endeavored security property for cryptographic hash functions is collision resistance: it should be computationally infeasible to find distinct inputs x,x2˘7x,x\u27 such that H(x)=H(x2˘7)H(x) = H(x\u27), where HH is the hash function. Unruh (EUROCRYPT 2016) proposed collapseability as its quantum equivalent. The Merkle-Damgård and sponge hashing modes have recently been proven to be collapseable under the assumption that the underlying primitive is collapseable. These modes are inherently sequential. In this work, we investigate collapseability of tree hashing. We first consider fixed length tree hashing modes, and derive conditions under which their collapseability can be reduced to the collapseability of the underlying compression function. Then, we extend the result to two methods for achieving variable length hashing: tree hashing with domain separation between message and chaining value, and tree hashing with length encoding at the end of the tree. The proofs are performed using the collapseability composability framework of Fehr (TCC 2018), that allows us to discard of deeply technical quantum details and to focus on proper composition of the tree hashes from their compression function

    The Summation-Truncation Hybrid: Reusing Discarded Bits for Free

    Get PDF
    A well-established PRP-to-PRF conversion design is truncation: one evaluates an nn-bit pseudorandom permutation on a certain input, and truncates the result to aa bits. The construction is known to achieve tight 2n−a/22^{n-a/2} security. Truncation has gained popularity due to its appearance in the GCM-SIV key derivation function (ACM CCS 2015). This key derivation function makes four evaluations of AES, truncates the outputs to n/2n/2 bits, and concatenates these to get a 2n2n-bit subkey. In this work, we demonstrate that truncation is wasteful. In more detail, we present the Summation-Truncation Hybrid (STH). At a high level, the construction consists of two parallel evaluations of truncation, where the truncated (n−a)(n-a)-bit chunks are not discarded but rather summed together and appended to the output. We prove that STH achieves a similar security level as truncation, and thus that the n−an-a bits of extra output is rendered for free. In the application of GCM-SIV, the current key derivation can be used to output 3n3n bits of random material, or it can be reduced to three primitive evaluations. Both changes come with no security loss

    Nuclear data measurements at the upgraded neutron time-of-flight facility n-TOF at CERN

    Get PDF
    Applications of nuclear data like neutron-induced reaction cross sections are related to research fields as stellar nucleosynthesis, the study of nuclear level densities and strength functions, and also play a key role in the safety and criticality assessment of existing and future nuclear reactors, in areas concerning radiation dosimetry, medical applications, transmutation of nuclear waste, accelerator-driven systems and fuel cycle investigations. The evaluations in nuclear data libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2002. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at CERN’s neutron time-of-flight facility n_TOF will be presented.Postprint (published version

    Observation of large scissors resonance strength in actinides

    Full text link
    The orbital M1-scissors resonance (SR) has been measured for the first time in the quasi-continuum of actinides. Particle-gamma coincidences are recorded with deuteron and 3He induced reactions on 232Th. The residual nuclei 231,232,233Th and 232,233Pa show an unexpectedly strong integrated strength of BM1=11−15μn2B_{M1} = 11-15 \mu_{n}^{2} in the Egamma=1.0 - 3.5 MeV region. The increased gamma-decay probability in actinides due to the SR is important for cross-section calculations for future fuel cycles of fast nuclear reactors and may also have impact on stellar nucleosynthesis.Comment: 5 pages and 4 figure
    • …
    corecore