582 research outputs found

    The political economy of pro-poor livestock policy in Eritrea

    Get PDF

    On the Progenitors of Core-Collapse Supernovae

    Full text link
    Theory holds that a star born with an initial mass between about 8 and 140 times the mass of the Sun will end its life through the catastrophic gravitational collapse of its iron core to a neutron star or black hole. This core collapse process is thought to usually be accompanied by the ejection of the star's envelope as a supernova. This established theory is now being tested observationally, with over three dozen core-collapse supernovae having had the properties of their progenitor stars directly measured through the examination of high-resolution images taken prior to the explosion. Here I review what has been learned from these studies and briefly examine the potential impact on stellar evolution theory, the existence of "failed supernovae", and our understanding of the core-collapse explosion mechanism.Comment: 7 Pages, invited review accepted for publication by Astrophysics and Space Science (special HEDLA 2010 issue

    Orbital evolution of P\v{r}\'{i}bram and Neuschwanstein

    Full text link
    The orbital evolution of the two meteorites P\v{r}\'{i}bram and Neuschwanstein on almost identical orbits and also several thousand clones were studied in the framework of the N-body problem for 5000 years into the past. The meteorites moved on very similar orbits during the whole investigated interval. We have also searched for photographic meteors and asteroids moving on similar orbits. There were 5 meteors found in the IAU MDC database and 6 NEAs with currently similar orbits to P\v{r}\'{i}bram and Neuschwanstein. However, only one meteor 161E1 and one asteroid 2002 QG46 had a similar orbital evolution over the last 2000 years.Comment: 7 pages, 2 figures, 3 table

    Charge Screening Effect in Metallic Carbon Nanotubes

    Full text link
    Charge screening effect in metallic carbon nanotubes is investigated in a model including the one-dimensional long-range Coulomb interaction. It is pointed out that an external charge which is being fixed spatially is screened by internal electrons so that the resulting object becomes electrically neutral. We found that the screening length is given by about the diameter of a nanotube.Comment: 11 pages, 6 figure

    PTF11iqb: cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae

    No full text
    The supernova (SN) PTF11iqb was initially classified as a Type IIn event caught very early after explosion. It showed narrow Wolf–Rayet (WR) spectral features on day 2 (as in SN 1998S and SN 2013cu), but the narrow emission weakened quickly and the spectrum morphed to resemble Types II-L and II-P. At late times, H? exhibited a complex, multipeaked profile reminiscent of SN 1998S. In terms of spectroscopic evolution, we find that PTF11iqb was a near twin of SN 1998S, although with somewhat weaker interaction with circumstellar material (CSM) at early times, and stronger interaction at late times. We interpret the spectral changes as caused by early interaction with asymmetric CSM that is quickly (by day 20) enveloped by the expanding SN ejecta photosphere, but then revealed again after the end of the plateau when the photosphere recedes. The light curve can be matched with a simple model for CSM interaction (with a mass-loss rate of roughly 10?4 M? yr?1) added to the light curve of a normal SN II-P. The underlying plateau requires a progenitor with an extended hydrogen envelope like a red supergiant at the moment of explosion, consistent with the slow wind speed (<80?km?s?1) inferred from narrow H? emission. The cool supergiant progenitor is significant because PTF11iqb showed WR features in its early spectrum – meaning that the presence of such WR features does not necessarily indicate a WR-like progenitor. Overall, PTF11iqb bridges SNe IIn with weaker pre-SN mass-loss seen in SNe II-L and II-P, implying a continuum between these types

    PTF11iqb: cool supergiant mass-loss that bridges the gap between Type IIn and normal supernovae

    No full text
    The supernova (SN) PTF11iqb was initially classified as a Type IIn event caught very early after explosion. It showed narrow Wolf–Rayet (WR) spectral features on day 2 (as in SN 1998S and SN 2013cu), but the narrow emission weakened quickly and the spectrum morphed to resemble Types II-L and II-P. At late times, H? exhibited a complex, multipeaked profile reminiscent of SN 1998S. In terms of spectroscopic evolution, we find that PTF11iqb was a near twin of SN 1998S, although with somewhat weaker interaction with circumstellar material (CSM) at early times, and stronger interaction at late times. We interpret the spectral changes as caused by early interaction with asymmetric CSM that is quickly (by day 20) enveloped by the expanding SN ejecta photosphere, but then revealed again after the end of the plateau when the photosphere recedes. The light curve can be matched with a simple model for CSM interaction (with a mass-loss rate of roughly 10?4 M? yr?1) added to the light curve of a normal SN II-P. The underlying plateau requires a progenitor with an extended hydrogen envelope like a red supergiant at the moment of explosion, consistent with the slow wind speed (<80?km?s?1) inferred from narrow H? emission. The cool supergiant progenitor is significant because PTF11iqb showed WR features in its early spectrum – meaning that the presence of such WR features does not necessarily indicate a WR-like progenitor. Overall, PTF11iqb bridges SNe IIn with weaker pre-SN mass-loss seen in SNe II-L and II-P, implying a continuum between these types

    WD + MS systems as the progenitor of SNe Ia

    Full text link
    We show the initial and final parameter space for SNe Ia in a (logPi,M2i\log P^{\rm i}, M_{\rm 2}^{\rm i}) plane and find that the positions of some famous recurrent novae, as well as a supersoft X-ray source (SSS), RX J0513.9-6951, are well explained by our model. The model can also explain the space velocity and mass of Tycho G, which is now suggested to be the companion star of Tycho's supernova. Our study indicates that the SSS, V Sge, might be the potential progenitor of supernovae like SN 2002ic if the delayed dynamical-instability model due to Han & Podsiadlowski (2006) is appropriate. Following the work of Meng, Chen & Han (2009), we found that the SD model (WD + MS) with an optically thick wind can explain the birth rate of supernovae like SN 2006X and reproduce the distribution of the color excess of SNe Ia. The model also predicts that at least 75% of all SNe Ia may show a polarization signal in their spectra.Comment: 6 pages, 2 figures, accepted for publication in Astrophysics & Space Science (Proceeding of the 4th Meeting on Hot Subdwarf Stars and Related Objects, edited by Zhanwen Han, Simon Jeffery & Philipp Podsiadlowski

    Circumstellar interaction in supernovae in dense environments - an observational perspective

    Full text link
    In a supernova explosion, the ejecta interacting with the surrounding circumstellar medium (CSM) give rise to variety of radiation. Since CSM is created from the mass lost from the progenitor star, it carries footprints of the late time evolution of the star. This is one of the unique ways to get a handle on the nature of the progenitor star system. Here, I will focus mainly on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe. Radio and X-ray emission from this class of SNe have revealed important modifications in their radiation properties, due to the presence of high density CSM. Forward shock dominance of the X-ray emission, internal free-free absorption of the radio emission, episodic or non-steady mass loss rate, asymmetry in the explosion seem to be common properties of this class of SNe.Comment: Fixed minor typos. 31 pages, 9 figures, accepted for publication in Space Science Reviews. Chapter in International Space Science Institute (ISSI) Book on "Supernovae" to be published in Space Science Reviews by Springe

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    corecore