122 research outputs found
Multiproxy analysis of a new terrestrial and a marine Cretaceous–Paleogene (K–Pg) boundary site from New Zealand
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 75 (2011): 657-672, doi:10.1016/j.gca.2010.10.016.An integrated study of palynology, Mössbauer spectroscopy, mineralogy and osmium
isotopes has led to the detection of the first K-Pg boundary clay layer in a Southern
Hemisphere terrestrial setting. The K-Pg boundary layer was independently identified at
centimetre resolution by all the above mentioned methods at the marine K-Pg boundary site of
mid-Waipara and the terrestrial site of Compressor Creek (Greymouth coal field), New
Zealand. Mössbauer spectroscopy shows an anomaly of Fe-containing particles in both K-Pg
boundary sections: jarosite at mid-Waipara and goethite at Compressor Creek. This anomaly
coincides with a turnover in vegetation indicated by an interval dominated by fern spores and
extinction of key pollen species in both sections. In addition to the terrestrial floristic changes,
the mid-Waipara section reveals a turnover in the dinoflagellate assemblages and the
appearance of global earliest Danian index species. Geochemical data reveal relatively small
iridium enrichments in the boundary layers of 321 pg/g at mid-Waipara and 176 pg/g at
Compressor Creek. Unradiogenic 187Os/188Os values of the boundary clay reveal the presence
of a significant extraterrestrial component. We interpret the accumulation of Fe nano-phases
at the boundary as originating from both the impactor and the crystalline basement target
rock. The goethite and jarosite are interpreted as secondary phases formed by weathering and
diagenesis. The primary phases were probably controlled by the initial composition of the
vapor plume and condensation kinetics rather than condensation thermodynamics. This
investigation indicates that identification of Fe in nano-phases by Mössbauer spectroscopy is
an accurate and cost-effective method for identifying impact event horizons and it efficiently
complements widely used biostratigraphic and geochemical methods.V. Vajda acknowledges the
financial support provided by the Swedish Royal Academy of Sciences through the Knut &
Alice Wallenbergs Foundation and from the Crafoord Foundation. P.S. Willumsen
acknowledges financial support from the Carlsberg Foundation no.2008_01_0404
On How Network Architecture Determines the Dominant Patterns of Spontaneous Neural Activity
In the absence of sensory stimulation, neocortical circuits display complex patterns of neural activity. These patterns are thought to reflect relevant properties of the network, including anatomical features like its modularity. It is also assumed that the synaptic connections of the network constrain the repertoire of emergent, spontaneous patterns. Although the link between network architecture and network activity has been extensively investigated in the last few years from different perspectives, our understanding of the relationship between the network connectivity and the structure of its spontaneous activity is still incomplete. Using a general mathematical model of neural dynamics we have studied the link between spontaneous activity and the underlying network architecture. In particular, here we show mathematically how the synaptic connections between neurons determine the repertoire of spatial patterns displayed in the spontaneous activity. To test our theoretical result, we have also used the model to simulate spontaneous activity of a neural network, whose architecture is inspired by the patchy organization of horizontal connections between cortical columns in the neocortex of primates and other mammals. The dominant spatial patterns of the spontaneous activity, calculated as its principal components, coincide remarkably well with those patterns predicted from the network connectivity using our theory. The equivalence between the concept of dominant pattern and the concept of attractor of the network dynamics is also demonstrated. This in turn suggests new ways of investigating encoding and storage capabilities of neural networks
A review of trisomy X (47,XXX)
Trisomy X is a sex chromosome anomaly with a variable phenotype caused by the presence of an extra X chromosome in females (47,XXX instead of 46,XX). It is the most common female chromosomal abnormality, occurring in approximately 1 in 1,000 female births. As some individuals are only mildly affected or asymptomatic, it is estimated that only 10% of individuals with trisomy X are actually diagnosed. The most common physical features include tall stature, epicanthal folds, hypotonia and clinodactyly. Seizures, renal and genitourinary abnormalities, and premature ovarian failure (POF) can also be associated findings. Children with trisomy X have higher rates of motor and speech delays, with an increased risk of cognitive deficits and learning disabilities in the school-age years. Psychological features including attention deficits, mood disorders (anxiety and depression), and other psychological disorders are also more common than in the general population. Trisomy X most commonly occurs as a result of nondisjunction during meiosis, although postzygotic nondisjunction occurs in approximately 20% of cases. The risk of trisomy X increases with advanced maternal age. The phenotype in trisomy X is hypothesized to result from overexpression of genes that escape X-inactivation, but genotype-phenotype relationships remain to be defined. Diagnosis during the prenatal period by amniocentesis or chorionic villi sampling is common. Indications for postnatal diagnoses most commonly include developmental delays or hypotonia, learning disabilities, emotional or behavioral difficulties, or POF. Differential diagnosis prior to definitive karyotype results includes fragile X, tetrasomy X, pentasomy X, and Turner syndrome mosaicism. Genetic counseling is recommended. Patients diagnosed in the prenatal period should be followed closely for developmental delays so that early intervention therapies can be implemented as needed. School-age children and adolescents benefit from a psychological evaluation with an emphasis on identifying and developing an intervention plan for problems in cognitive/academic skills, language, and/or social-emotional development. Adolescents and adult women presenting with late menarche, menstrual irregularities, or fertility problems should be evaluated for POF. Patients should be referred to support organizations to receive individual and family support. The prognosis is variable, depending on the severity of the manifestations and on the quality and timing of treatment
Melt Inclusion Vapour Bubbles: The Hidden Reservoir for Major and Volatile Elements
Olivine-hosted melt inclusions (MIs) provide samples of magmatic liquids and their dissolved volatiles from deep within the plumbing system. Inevitable post-entrapment modifications can lead to significant compositional changes in the glass and/or any contained bubbles. Re-heating is a common technique to reverse MI crystallisation; however, its effect on volatile contents has been assumed to be minor. We test this assumption using crystallised and glassy basaltic MIs, combined with Raman spectroscopy and 3D imaging, to investigate the changes in fluid and solid phases in the bubbles before and after re-heating. Before re-heating, the bubble contains CO2 gas and anhydrite (CaSO4) crystallites. The rapid diffusion of major and volatile elements from the melt during re-heating creates new phases within the bubble: SO2, gypsum, Fe-sulphides. Vapour bubbles hosted in naturally glassy MIs similarly contain a plethora of solid phases (carbonates, sulphates, and sulphides) that account for up to 84% of the total MI sulphur, 80% of CO2, and 14% of FeO. In both re-heated and naturally glassy MIs, bubbles sequester major and volatile elements that are components of the total magmatic budget and represent a “loss” from the glass. Analyses of the glass alone significantly underestimates the original magma composition and storage parameters
Scaling of Brain Metabolism with a Fixed Energy Budget per Neuron: Implications for Neuronal Activity, Plasticity and Evolution
It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution
No effect of feedback, level of processing or stimulus presentation protocol on perceptual learning when easy and difficult trials are interleaved
The role of feedback during training is a topic of great theoretical importance in perceptual learning. Feedback can be provided externally by the environment or internally by the observer. In order to evaluate the effectiveness of learning with internal versus external feedback, we performed a large multi-level experiment, varying the type of training task (Motion or Form), the level of processing (Local or Global), the presence of feedback (With or Without) and finally the method of stimulus presentation (Adaptive staircase or Method of constant stimuli). 140 participants were randomly assigned to one of ten groups and undertook 3 days of training in one condition only. Detection thresholds were measured daily before and after training with a pre- and post-assessment. A 75% detection threshold was calculated and used to estimate that day’s training levels (65% and 85% accuracy for difficult and easy trials respectively). The group trained with MOCS were presented with predefined randomly interleaved easy and difficult trials ranging from 50% to 95% stimulus intensity. Our findings indicate that improvement was generally robust across training-tasks, processing levels and feedback conditions. This suggests that internal reinforcement is as effective as external feedback in a discrete-noise-paradigm for local and global tasks when easy and difficult trials are interleaved
Recommended from our members
Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.
Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (n = 143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (n = 152), or no hydrocortisone (n = 108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (n = 137), shock-dependent (n = 146), and no (n = 101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707
Report from the Annual Conference of the British Society of Echocardiography, November 2017, Edinburgh International Conference Centre, Edinburgh
No abstract available
- …