33 research outputs found

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures

    Get PDF
    Funder: 2017 SGR 329 Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706)Funder: This article is based upon work from COST Action StableNextSol MP1307 supported by COST (European Cooperation in Science and Technology). M. V. K., E. A. K., V. B., and A. Osherov thank the financial support of the United States – Israel Binational Science Foundation (grant no. 2015757). E. A. K., A. A., and I. V.-F. acknowledge a partial support from the SNaPSHoTs project in the framework of the German-Israeli bilateral R&D cooperation in the field of applied nanotechnology. M. S. L. thanks the financial support of NSF (ECCS, award #1610833). S. C., M. Manceau and M. Matheron thank the financial support of European Union’s Horizon 2020 research and innovation programme under grant agreement No 763989 (APOLO project). F. De R. and T. M. W. would like to acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) through the SPECIFIC Innovation and Knowledge Centre (EP/N020863/1) and express their gratitude to the Welsh Government for their support of the Ser Solar programme. P. A. T. acknowledges financial support from Russian Science Foundation (project No. 19-73-30020). J.K. acknowledges the support by the Solar Photovoltaic Academic Research Consortium II (SPARC II) project, gratefully funded by WEFO. M.K.N. acknowledges financial support from Innosuisse project 25590.1 PFNM-NM, Solaronix, Aubonne, Switzerland. C.-Q. M. would like to acknowledge The Bureau of International Cooperation of Chinese Academy of Sciences for the support of ISOS11 and the Ministry of Science and Technology of China for the financial support (No 2016YFA0200700). N.G.P. acknowledges financial support from the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT Future Planning (MSIP) of Korea under contracts NRF-2012M3A6A7054861 and NRF-2014M3A6A7060583 (Global Frontier R&D Program on Center for Multiscale Energy System). CSIRO’s contribution to this work was conducted with funding support from the Australian Renewable Energy Agency (ARENA) through its Advancing Renewables Program. A. F. N gratefully acknowledges support from FAPESP (Grant 2017/11986-5) and Shell and the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. Y.-L.L. and Q.B. acknowledge support from the National Science Foundation Division of Civil, Mechanical and Manufacturing Innovation under award #1824674. S.D.S. acknowledges the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement No. 756962), and the Royal Society and Tata Group (UF150033). The work at the National Renewable Energy Laboratory was supported by the U.S. Department of Energy (DOE) under contract DE-AC36-08GO28308 with Alliance for Sustainable Energy LLC, the manager and operator of the National Renewable Energy Laboratory. The authors (J.J.B, J.M.L., M.O.R, K.Z.) acknowledge support from the De-risking halide perovskite solar cells program of the National Center for Photovoltaics, funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. H.J.S. acknowledges the support of EPSRC UK, Engineering and Physical Sciences Research Council. V.T. and M. Madsen acknowledges ‘Villum Foundation’ for funding of the project CompliantPV, under project number 13365. M. Madsen acknowledges Danmarks Frie Forskningsfond, DFF FTP for funding of the project React-PV, No. 8022-00389B. M.G. and S.M.Z. thank the King Abdulaziz City for Science and technology (KACST) for financial support. S.V. acknowledges TKI-UE/Ministry of Economic Affairs for financial support of the TKI-UE toeslag project POP-ART (No. 1621103). M.L.C. and H.X. acknowledges the support from Spanish MINECO for the grant GraPErOs (ENE2016-79282-C5-2-R), the OrgEnergy Excellence Network CTQ2016-81911- REDT, the Agùncia de Gestiód'Ajuts Universitaris i de Recerca (AGAUR) for the support to the consolidated Catalonia research group 2017 SGR 329 and the Xarxa de Referùncia en Materials Avançats per a l'Energia (Xarmae). ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme / Generalitat de Catalunya.Abstract: Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis

    Measurement of prompt D+ and Ds+ production in pPb collisions at √sNN = 5. 02 TeV

    Get PDF
    The production of prompt D+ and D+s mesons is studied in proton-lead collisions at a centre-of-mass energy of √sNN = 5.02 TeV. The data sample corresponding to an integrated luminosity of (1.58 ± 0.02)nb−1 is collected by the LHCb experiment at the LHC. The differential production cross-sections are measured using D+ and D+s candidates with transverse momentum in the range of 0 < pT < 14 GeV/c and rapidities in the ranges of 1.5 < y∗ < 4.0 and –5.0 < y∗ < –2.5 in the nucleon-nucleon centre-of-mass system. For both particles, the nuclear modification factor and the forward-backward production ratio are determined. These results are compared with theoretical models that include initial-state nuclear effects. In addition, measurements of the cross-section ratios between D+, D+s and D0 mesons are presented, providing a baseline for studying the charm hadronization in lead-lead collisions at LHC energies

    Measurement of the CKM angle Îł using the B± → D*h± channels

    Get PDF
    A measurement of the CP-violating observables from B± → D*K± and B± → D*π± decays is presented, where D*(D) is an admixture of D*0 and D¯∗0 (D0 and DÂŻ0) states and is reconstructed through the decay chains D*→ Dπ0/Îł and D→KS0π+π−/KS0K+K−. The measurement is performed by analysing the signal yield variation across the D decay phase space and is independent of any amplitude model. The data sample used was collected by the LHCb experiment in proton-proton collisions and corresponds to a total integrated luminosity of 9 fb−1 at centre-of-mass energies of 7, 8 and 13 TeV. The CKM angle Îł is determined to be 69−14+13∘ using the measured CP-violating observables. The hadronic parameters rBD∗K±, rBD∗π±, ÎŽBD∗K±, ÎŽBD∗π±, which are the ratios and strong phase differences between favoured and suppressed B± decays, are also reported

    Influence of basal energy expenditure and body composition on bone mineral density in postmenopausal women

    No full text
    Maria Aparecida Bezerra Quirino,1 João Modesto-Filho,2 Sancha Helena de Lima Vale,3 Camila Xavier Alves,3 Lúcia Dantas Leite,4 José Brandão-Neto51Department of Physiotherapy, 2Department of Clinical Medicine, Universidade Federal da Paraíba, João Pessoa, Brazil; 3Postgraduate Health Science Program, 4Department of Nutrition, 5Department of Clinical Medicine, Universidade Federal do Rio Grande do Norte, Natal, BrazilBackground: The aim of this study was to investigate the influence of body mass index, body weight, lean mass, fat mass, and basal energy expenditure on bone mineral density in postmenopausal women.Methods: This was a cross-sectional, descriptive study of a sample of 50 women, with minimum time since menopause between 1 and 10 years. Bone mineral density was assessed at the lumbar spine (L2–L4), femoral neck, Ward's triangle, and trochanter using dual-energy X-ray absorptiometry. Body mass index, lean mass, fat mass, and basal energy expenditure were measured by bioimpedance.Results: The mean age of the women was 51.49 ± 3.86 years and time since menopause was 3.50 ± 2.59 years. Significant negative correlations were found between chronological age and lumbar spine, femoral neck, Ward's triangle, and trochanteric bone mineral density. In regard to time since menopause, we also observed significant negative correlations with bone mineral density at the lumbar spine and Ward's triangle. The following significant positive correlations were recorded: body mass index with bone mineral density at the femoral neck and trochanter; fat mass with bone mineral density at the femoral neck and trochanter; lean mass with bone mineral density at the lumbar spine, femoral neck, and trochanter; and basal energy expenditure with bone mineral density at all sites assessed. On the other hand, the multiple linear regression model showed that: 20.2% of bone mineral density variability at the lumbar spine is related to lean mass and time since menopause; 22.3% of bone mineral density variability at the femoral neck is related to body weight and age; 18.9% of bone mineral density variability at Ward's triangle is related to age and basal energy expenditure; and 39% of bone mineral density variability at the trochanter is related to body mass index, age, and menarche.Conclusion: Changes in bone mineral density, specific for each skeletal site, are influenced by age, time since menopause, body weight, body mass index, lean mass, and basal energy expenditure. Lean mass and basal energy expenditure positively influenced bone mineral density at the lumbar spine and Ward's triangle, with a predominance of trabecular bone.Keywords: women, menopause, bone mineral density, body composition, energy expenditur

    Occurrence of pathogenic environmental mycobacteria on surfaces in health institutions

    No full text
    Maria Gorete Mendes dé souza1, Daisy Nakamura Sato2, Clarice Queico Fujimura Leite3, Sérgio Roberto de Andrade Leite4, Flávio Garcia Sartori1, Karina de Andrade Prince3, Luciana Assirati Casmeiro1, Carlos Henrique Gomes Martins11Laboratório de Pesquisa em Microbiologia Aplicada, Universidade de Franca, Franca, Brazil; 2Laboratório de Micobactéria, Instituto Adolfo Lutz, Ribeirão Preto, Brazil; 3Departamento de Ciências Biológicas, Universidade Estadual Paulista, Araraquara, Brazil; 4Instituto de Química, Universidade Estadual Paulista, Araraquara, BrazilAbstract: The presence of environmental mycobacteria on surfaces in two public health institutions, namely a health center and a hospital in upstate São Paulo (Brazil), was identified by polymerase chain reaction-restriction enzyme analysis (PRA). The possible sources of contamination by these microorganisms were evaluated, contributing to epidemiology studies.Methods: From June 2005 to June 2006, a total of 632 samples were collected from exposed surfaces, such as washbasins, drinking fountains, and other accessible sites, and the mycobacteria present in the samples were isolated and cultured.Results: Sixty-five mycobacteria were isolated from the 632 samples; 47 of which were detected in samples from the health center and 18 in samples collected from the hospital. The isolates were identified by DNA restriction patterns obtained by PRA, and potentially pathogenic species were found to be prevalent among the identified mycobacteria. This study shows that the PRA technique can be employed as a fast and easy method for identification of nontuberculous mycobacteria in public areas.Conclusions: The isolation of environmental mycobacteria from the two health institutions demonstrates that these surfaces are reservoirs of potentially pathogenic mycobacteria and indicates the need for continuous maintenance and monitoring. These data will add to the study of the epidemiology of these microorganisms.Keywords: environmental mycobacteria, health center, PCR, PR

    Encapsulation of cisplatin in long-circulating and pH-sensitive liposomes improves its antitumor effect and reduces acute toxicity

    No full text
    Elaine A Leite,1,2 Cristina M Souza,3 Álvaro D Carvalho-Júnior,1,2 Luiz GV Coelho,4 Ângela MQ Lana,5 Geovanni D Cassali,3 Mônica C Oliveira11Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; 2Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil; 3Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; 4Departamento de Clínica Médica, Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; 5Departamento de Zootecnia, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, BrazilAbstract: Cisplatin (CDDP) is one of the most effective and potent anticancer drugs used as first-line chemotherapy against several solid tumors. However, the severe side effects and its tendency to provoke chemoresistance often limit CDDP therapy. To avoid these inconveniences, the present study's research group developed long-circulating and pH-sensitive liposomes containing CDDP (SpHL-CDDP). The present study aimed to evaluate the antitumor effect and toxicity of SpHL-CDDP, as compared with that of free CDDP, and long-circulating and non-pH-sensitive liposomes containing CDDP (NSpHL-CDDP), after their intravenous administration in solid Ehrlich tumor-bearing mice. Antitumor activity was evaluated by analysis of tumor volume and growth inhibition ratio, serum vascular endothelial growth factor (VEGF) levels, and histomorphometric and immunohistochemical studies. Body weight variation and the histological examination of bone marrow and kidneys were used as toxicity indicators. A significant reduction in the tumor volume and a higher tumor growth inhibition ratio was observed after SpHL-CDDP treatment, compared with free CDDP and NSpHL-CDDP treatments. In addition, complete remission of the tumor was detected in 18.2% of the mice treated with SpHL-CDDP (16 mg/kg). As such, the administration of SpHL-CDDP, as compared with free CDDP and NSpHL-CDDP, led to a decrease in the area of necrosis and in the percentage of positive CDC 47 tumor cells. A significant reduction in the VEGF serum level was also observed after SpHL-CDDP treatment, as compared with free-CDDP treatment. SpHL-CDDP administered in a two-fold higher dose than that of free CDDP presented a loss in body weight and changes in the hematopoietic tissue morphology, which proved to be similar to that of free CDDP. No changes could be verified in the renal tissue after any formulations containing CDDP had been administered. These findings showed that SpHL-CDDP allowed for the administration of higher doses of CDDP, significantly improving its antitumor effect.Keywords: antitumor effect, toxicity, angiogenesis, Ehrlich tumo
    corecore