2,446 research outputs found

    A retrospective study of magnetic resonance-guided focused ultrasound ablation for uterine myoma in Taiwan

    Get PDF
    AbstractObjectiveTo report our experiences with 40 patients who were treated with magnetic resonance-guided focused ultrasound surgery (MRgFUS) for uterine fibroids and their 6-month follow-up status.Materials and MethodsA total of 40 patients with uterine fibroids underwent MRgFUS from January 2009 to November 2011. The Uterine Fibroid Symptoms and Quality of Life Questionnaire was used to determine the patients' Symptom Severity Scores (SSS) prior to and 6 months after treatment. The nonperfused volume (NPV) values and NPV ratio were obtained immediately at the end of the treatment and at 6 months follow-up.ResultsNo procedure-related complications were noted throughout the 6-month follow-up period among the 40 patients who underwent MRgFUS for uterine fibroids. The mean reduction in SSS in our patients after 6 months was 43.7%, and the mean reduction of fibroid volume was 31.7%. In addition, the mean reduction of NPV and mean NPV ratio was 52.7% and 33.3%, respectively.ConclusionThe results obtained from this study demonstrated that MRgFUS can be safely and effectively used to ablate uterine fibroids to produce a significant decrease in mean fibroid volume and improve SSS for up to 6 months after treatment

    Long-term follow-up of patients with surgical intractable acromegaly after linear accelerator radiosurgery

    Get PDF
    Background/PurposeRadiotherapy is a crucial treatment for acromegalic patients with growth hormone (GH)-secreting pituitary tumors. However, its effect takes time. We retrospectively reviewed the long-term outcome of linear accelerator stereotactic radiosurgery (LINAC SRS) for patients with acromegaly from the perspective of biochemical remission and associated factors.MethodsTwenty-two patients presenting with residual or recurrent (GH)-secreting functional pituitary tumor between 1994 and 2004 who received LINAC SRS were enrolled and followed up for at least 3 years. Residual or recurrent tumor was defined as persistent elevated GH or insulin-like growth factor-1 (IGF-1) level and image-confirmed tumor after previous surgical treatment. Biochemical remission was defined as fasting GH less than 2.5 ng/mL with normal sex-and-age adjusted IGF-1.ResultsThe mean follow-up period was 94.7 months (range 36–161 months). Overall mean biochemical remission time was 53 months (median 30 months). Biochemical control was achieved in 15 patients (68.2%) over the follow up period. One patient experienced recurrence after SRS and underwent another operation. Initial GH at diagnosis and pre-SRS GH correlated with biochemical control (p = 0.005 and p < 0.0001, respectively). Further evaluation demonstrated that biochemical control stabilized after 7.5 years. Overall post-SRS hormone deficit persisted in five patients (22.7%).ConclusionIn comparison to other radiosurgery modalities, LINAC radiosurgery also provides a satisfactory outcome. SRS has maximum effect over the first 2 years and stabilizes after 7.5 years. Moreover, SRS elicits long-term biochemical effects and requires longer follow-up for better biochemical remission

    NbSe3: Effect of Uniaxial Stress on the Threshold Field and Fermiology

    Full text link
    We have measured the effect of uniaxial stress on the threshold field ET for the motion of the upper CDW in NbSe3. ET exhibits a critical behavior, ET ~ (1 - e/ec)^g, wher e is the strain, and ec is about 2.6% and g ~ 1.2. This ecpression remains valid over more than two decades of ET, up to the highest fields of about 1.5keV/m. Neither g nor ec is very sensitive to the impurity concentraction. The CDW transition temperature Tp decreases linearly with e at a rate dTp/de = -10K/%, and it does not show any anomaly near ec. Shubnikov de-Haas measurements show that the extremal area of the Fermi surface decreases with increasing strain. The results suggest that there is an intimate relationship between pinning of the upper CDW and the Fermiology of NbSe3.Comment: 4 pages, 5 figure

    Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels

    Get PDF
    Large conductance Ca(2+)-activated K(+) channels (BK channels) gate open in response to both membrane voltage and intracellular Ca(2+). The channel is formed by a central pore-gate domain (PGD), which spans the membrane, plus transmembrane voltage sensors and a cytoplasmic gating ring that acts as a Ca(2+) sensor. How these voltage and Ca(2+) sensors influence the common activation gate, and interact with each other, is unclear. A previous study showed that a BK channel core lacking the entire cytoplasmic gating ring (Core-MT) was devoid of Ca(2+) activation but retained voltage sensitivity (Budelli et al. 2013. Proc. Natl. Acad. Sci. USA. http://dx.doi.org/10.1073/pnas.1313433110). In this study, we measure voltage sensor activation and pore opening in this Core-MT channel over a wide range of voltages. We record gating currents and find that voltage sensor activation in this truncated channel is similar to WT but that the coupling between voltage sensor activation and gating of the pore is reduced. These results suggest that the gating ring, in addition to being the Ca(2+) sensor, enhances the effective coupling between voltage sensors and the PGD. We also find that removal of the gating ring alters modulation of the channels by the BK channel’s β1 and β2 subunits

    Tensor Graphical Lasso (TeraLasso)

    Full text link
    This paper introduces a multi-way tensor generalization of the Bigraphical Lasso (BiGLasso), which uses a two-way sparse Kronecker-sum multivariate-normal model for the precision matrix to parsimoniously model conditional dependence relationships of matrix-variate data based on the Cartesian product of graphs. We call this generalization the {\bf Te}nsor g{\bf ra}phical Lasso (TeraLasso). We demonstrate using theory and examples that the TeraLasso model can be accurately and scalably estimated from very limited data samples of high dimensional variables with multiway coordinates such as space, time and replicates. Statistical consistency and statistical rates of convergence are established for both the BiGLasso and TeraLasso estimators of the precision matrix and estimators of its support (non-sparsity) set, respectively. We propose a scalable composite gradient descent algorithm and analyze the computational convergence rate, showing that the composite gradient descent algorithm is guaranteed to converge at a geometric rate to the global minimizer of the TeraLasso objective function. Finally, we illustrate the TeraLasso using both simulation and experimental data from a meteorological dataset, showing that we can accurately estimate precision matrices and recover meaningful conditional dependency graphs from high dimensional complex datasets.Comment: accepted to JRSS-

    Direct evidence of ZnO morphology modification via the selective adsorption of ZnO-binding peptides

    Get PDF
    Biomolecule-mediated ZnO synthesis has great potential for the tailoring of ZnO morphology for specific application in biosensors, window materials for display and solar cells, dye-sensitized solar cells (DSSCs), biomedical materials, and photocatalysts due to its specificity and multi-functionality. In this contribution, the effect of a ZnO-binding peptide (ZnO-BP, G-12: GLHVMHKVAPPR) and its GGGC-tagged derivative (GT-16: GLHVMHKVAPPRGGGC) on the growth of ZnO crystals expressing morphologies dependent on the relative growth rates of (0001) and (10 (1) over bar0) planes of ZnO have been studied. The amount of peptide adsorbed was determined by a depletion method using oriented ZnO films grown by Atomic Layer Deposition (ALD), while the adsorption behavior of G-12 and GT-16 was investigated using XPS and a computational approach. Direct evidence was obtained to show that (i) both the ZnO-BP identified by phage display and its GGGC derivative (GT-16) are able to bind to ZnO and modify crystal growth in a molecule and concentration dependent fashion, (ii) plane selectivity for interaction with the (0001) versus the (10 (1) over bar0) crystal planes is greater for GT-16 than G-12; and (iii) specific peptide residues interact with the crystal surface albeit in the presence of charge compensating anions. To our knowledge, this is the first study to provide unambiguous and direct quantitative experimental evidence of the modification of ZnO morphology via (selective and nonselective) adsorption-growth inhibition mechanisms mediated by a ZnO-BP identified from phage display libraries

    Depth-resolved cellular microrheology using HiLo microscopy

    Get PDF
    It is increasingly important to measure cell mechanical properties in three-dimensional environments. Particle tracking microrheology (PTM) can measure cellular viscoelastic properties; however, out-of-plane data can introduce artifacts into these measurements. We developed a technique that employs HiLo microscopy to reduce out-of-plane contributions. This method eliminated signals from 90% of probes 0.5 μm or further from the focal plane, while retaining all in-plane probes. We used this technique to characterize live-cell bilayers and found that there were significant, frequency-dependent changes to the extracted cell moduli when compared to conventional analysis. Our results indicate that removal of out-of-plane information is vital for accurate assessments of cell mechanical properties

    Re-evaluating how charge transfer modifies the conformation of adsorbed molecules

    Get PDF
    The archetypal electron acceptor molecule, TCNQ, is generally believed to become bent into an inverted bowl shape upon adsorption on the coinage metal surfaces on which it becomes negatively charged. New quantitative experimental structural measurements show that this is not the case for TCNQ on Ag(111). DFT calculations show that the inclusion of dispersion force corrections reduces not only the molecule-substrate layer spacing but also the degree of predicted molecular bonding. However, complete agreement between experimentally-determined and theoretically-predicted structural parameters is only achieved with the inclusion of Ag adatoms into the molecular layer, which is also the energetically favoured configuration. The results highlight the need for both experimental and theoretical quantitative structural methods to reliably understand similar metal-organic interfaces and highlight the need to re-evaluate some previously-investigated systems

    Adaptation of High-Growth Influenza H5N1 Vaccine Virus in Vero Cells: Implications for Pandemic Preparedness

    Get PDF
    Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14), a reassortant virus between A/Vietnam/1194/2004 (H5N1) virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15) was generated and can grow over 108 TCID50/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes
    corecore