146 research outputs found

    High-resolution truncated plurigaussian simulations for the characterization of heterogeneous formations

    Get PDF
    Integrating geological concepts, such as relative positions and proportions of the different lithofacies, is of highest importance in order to render realistic geological patterns. The truncated plurigaussian simulation method provides a way of using both local and conceptual geological information to infer the distributions of the facies and then those of hydraulic parameters. The method (Le Loc'h and Galli 1994) is based on the idea of truncating at least two underlying multi-Gaussian simulations in order to create maps of categorical variable. In this manuscript we show how this technique can be used to assess contaminant migration in highly heterogeneous media. We illustrate its application on the biggest contaminated site of Switzerland. It consists of a contaminant plume located in the lower fresh water Molasse on the western Swiss Plateau. The highly heterogeneous character of this formation calls for efficient stochastic methods in order to characterize transport processes.Comment: 12 pages, 9 figure

    Modelling the Impact of Anisotropy on Hydrocarbon Production in Heterogeneous Reservoirs

    Get PDF
    Effective and optimal hydrocarbon production from heterogeneous and anisotropic reservoirs is a developing challenge in the hydrocarbon industry. While experience leads us to intuitive decisions for the production of these heterogeneous and anisotropic reservoirs, there is a lack of information concerning how hydrocarbon and water production rate and cumulative production as well as water cut and water breakthrough time depend on quantitative measures of heterogeneity and anisotropy. In this work, we have used Generic Advanced Fractal Reservoir Models (GAFRMs) to model reservoirs with controlled heterogeneity and vertical and/or horizontal anisotropy, following the approach of Al-Zainaldin et al. (Transp Porous Media 116(1):181–212, 2017). This Generic approach uses fractal mathematics which captures the spatial variability of real reservoirs at all scales. The results clearly show that some anisotropy in hydrocarbon production and water cut can occur in an isotropic heterogeneous reservoir and is caused by the chance placing of wells in high-quality reservoir rock or vice versa. However, when horizontal anisotropy is introduced into the porosity, cementation exponent and grain size (and hence also into the permeability, capillary pressure, water saturation) in the reservoir model, all measures of early stage and middle stage hydrocarbon and water production become anisotropic, with isotropic flow returning towards the end of the reservoir’s lifetime. Specifically, hydrocarbon production rate and cumulative production are increased in the direction of anisotropy, as is water cut, while the time to water breakthrough is reduced. We found no such relationship when varying vertical anisotropy because we were using vertical wells but expect there to be an effect if horizontal wells were used

    Inverse Methods in Hydrogeology: Evolution and Recent Trends

    Full text link
    [EN] Parameter identification is an essential step in constructing a groundwater model. The process of recognizing model parameter values by conditioning on observed data of the state variable is referred to as the inverse problem. A series of inverse methods has been proposed to solve the inverse problem, ranging from trial-and-error manual calibration to the current complex automatic data assimilation algorithms. This paper does not attempt to be another overview paper on inverse models, but rather to analyze and track the evolution of the inverse methods over the last decades, mostly within the realm of hydrogeology, revealing their transformation, motivation and recent trends. Issues confronted by the inverse problem, such as dealing with multiGaussianity and whether or not to preserve the prior statistics are discussed. (C) 2013 Elsevier Ltd. All rights reserved.The authors gratefully acknowledge the financial support by the Spanish Ministry of Science and Innovation through project CGL2011-23295. We would like to thank Dr. Alberto Guadagnini (Politecnico di Milano, Italy) for his comments during the reviewing process, which helped improving the final paper.Zhou, H.; GĂłmez-HernĂĄndez, JJ.; Li, L. (2014). Inverse Methods in Hydrogeology: Evolution and Recent Trends. Advances in Water Resources. 63:22-37. https://doi.org/10.1016/j.advwatres.2013.10.014S22376

    Transformations et valorisation de produits naturels insaturés par métathÚse croisée Úne-yne

    No full text
    (Jury : C. Bruneau, C. Darcel, L. Delaude, C. Fischmeister, O. Piva, P. van de Weghe)ThÚse de Doctorat de l'Université de Rennes

    Vitesses et perméabilité des roches: modélisation du rÎle des fluides et des fissures.

    No full text
    MĂ©moires de GĂ©osciences Rennes, n° 67,276 p. ISBN : 2-905532-66-1La caractĂ©risation des fissures dans les roches est devenu un thĂšme de recherche majeur pour de nombreuses applications gĂ©ophysiques dans le domaine de la subsurface ou des rĂ©servoirs (entre autres l'exploration sismique, l'Ă©tude continue de l'Ă©volution d'une zone de production en pĂ©trole, gaz ou eau, le stockage de dĂ©chets toxiques, la gĂ©othermie ... ). Cet intĂ©rĂȘt pour les fissures provient de ce qu'elles se comportent Ă  la fois comme des rĂ©serves de fluide et comme des chemins d'Ă©coulement potentiels. Au cours de ce travail, nous nous sommes consacrĂ©s Ă  l'Ă©tude des vitesses d'ondes se propageant dans les roches fissurĂ©es. Notre objectif est de modĂ©liser, Ă  partir d'une mĂ©thode diffĂ©rentielle auto-cohĂ©rente, l'influence de la fissuration et de la saturation en fluide sur les propriĂ©tĂ©s Ă©lastiques effectives et, par consĂ©quent, sur les vitesses des ondes. Le modĂšle construit repose sur une hypothĂšse de gĂ©omĂ©trie simplifiĂ©e pour les inclusions poreuses: la porositĂ© dite rigide est reprĂ©sentĂ©e par des sphĂšres tandis que la porositĂ© de type compressible (les fissures) est dĂ©crite par des ellipsoĂŻdes de rĂ©volution. Des distributions isotropes et anisotropes de. fissures ont Ă©tĂ© considĂ©rĂ©es. Ce modĂšle permet * d'accĂ©der aux modules Ă©lastiques effectifs d'une roche sĂšche ou . d'une roche saturĂ©e Ă  l'intĂ©rieur de laquelle le fluide est non relaxĂ©. Aussi les vitesses calculĂ©es correspondent-elles Ă  des frĂ©quences Ă©levĂ©es, de l'ordre de celles mises en jeu en laboratoire (MHz). Une seconde Ă©tape de cette Ă©tude permet de prĂ©dire la dispersion entre les vitesses Ă  haute (MHz) et basse (Hz-kHz) frĂ©quences. La dispersion de vitesse est attribuĂ©e Ă  un Ă©coulement local du fluide contrĂŽlĂ© par la ,variation de compressibilitĂ© des inclusions poreuses. Dans cette optique, le modĂšle diffĂ©rentiel auto-cohĂ©rent et la limite basse frĂ©quence de la thĂ©orie de Biot ont Ă©tĂ© combinĂ©s. Nos rĂ©sultats soulignent qu'une dispersion importante est attendue pour les rĂȘches fissurĂ©es, plus particuliĂšrement dans le cas des ondes de cisaillement. Lorsque deux fluides coexistent dans l'espace poreux et que la saturation n'e st pas uniforme, la modĂ©lisation des vitesses nĂ©cessite de prendre en compte une seconde famille assimilĂ©es Ă  des poches correspondant Ă  des zones de saturations diffĂ©rentes. significatives d'une Ă©chelle beaucoup plus grande que celle des pores/fissures et so second mĂ©canisme de dispersion appelĂ© mĂ©canisme de l'Ă©coulement de poche. Ă©laborĂ© qui permet de dĂ©crire les vitesses en fonction de la saturation en te hĂ©tĂ©rogĂ©nĂ©itĂ©s tant Ă  l'Ă©chelle microscopique qu'Ă  l'Ă©chelle des poches. Nous avons cherchĂ© Ă  modĂ©liser le comportement des vitesses mesurĂ©es en laboratoire sur des Ă©chanti llons pendant des cycles d'imbibition/drainage. L'hystĂ©rĂ©sis de vitesse observĂ© expĂ©rimentalement est simulĂ© en considĂ©rant des distributions de fluide diffĂ©rentes suivant le processus de saturation impliquĂ©. Les vitesses prĂ©dites s'accordent avec les donnĂ©es expĂ©rimentales. A l'aide d'une dĂ©marche analogue, on a montrĂ© que les anomalies de vitesses dĂ©tectĂ©es avant certains sĂ©ismes peuvent aussi ĂȘtre significatives d'une saturation non uniforme. Un dernier volet de ce travail, motivĂ© par les recherches menĂ©es sur le stockage des dĂ©chets nuclĂ©aires, a Ă©tĂ© consacrĂ© Ă  l'Ă©tude de la fissuration thermique dans des roches ignĂ©es. Deux processus de fissuration mĂ©ritent d'ĂȘtre examinĂ©s. Le premier dĂ©pend de ta dilatation thermique des minĂ©raux et a Ă©tĂ© envisagĂ© d'un point de vue expĂ©rimental. Le second est liĂ© Ă  la saturation en fluide de la roche. Un modĂšle a Ă©tĂ© rĂ©alisĂ© afin d'analyser, pour des roches fissurĂ©es et saturĂ©es, l'effet de la fissuration thermique sur la permĂ©abilitĂ©. Cette derniĂšre s'avĂšre contrĂŽlĂ©e par deux effets antagonistes: la fermeture des fissures et l'amĂ©lioration de la connectivitĂ©. L'augmentation de permĂ©abilitĂ© attendue pour une Ă©lĂ©vation de tempĂ©rature atteignant 300°C reste modĂ©rĂ©e (1 Ă  2 ordres de grandeur).no abstrac
    • 

    corecore