13 research outputs found

    Putative Kappa Opioid Heteromers As Targets for Developing Analgesics Free of Adverse Effects

    No full text
    It is now generally recognized that upon activation by an agonist, β-arrestin associates with G protein-coupled receptors and acts as a scaffold in creating a diverse signaling network that could lead to adverse effects. As an approach to reducing side effects associated with κ opioid agonists, a series of β-naltrexamides <b>3</b>–<b>10</b> was synthesized in an effort to selectively target putative κ opioid heteromers without recruiting β-arrestin upon activation. The most potent derivative <b>3</b> (INTA) strongly activated KOR-DOR and KOR-MOR heteromers in HEK293 cells. In vivo studies revealed <b>3</b> to produce potent antinociception, which, when taken together with antagonism data, was consistent with the activation of both heteromers. <b>3</b> was devoid of tolerance, dependence, and showed no aversive effect in the conditioned place preference assay. As immunofluorescence studies indicated no recruitment of β-arrestin2 to membranes in coexpressed KOR-DOR cells, this study suggests that targeting of specific putative heteromers has the potential to identify leads for analgesics devoid of adverse effects
    corecore