1,279 research outputs found

    Electrochemical M2+ recognition by an amidopyridyl-tetrathiafulvalene derivative

    Get PDF
    A tetrathiafulvalene-based redox-responsive receptor incorporating amide and pyridyl coordinating units exhibits an original multi-wave electrochemical recognition behaviour towards Cd(II)

    Alignment of the medial tibial plateau affects the rate of joint space narrowing in the osteoarthritic knee

    Get PDF
    SummaryObjectiveTo determine, in serial fixed-flexion (FF) radiographs of subjects with knee osteoarthritis (KOA), the importance of, and basis for, the effect of alignment of the medial tibial plateau (MTP), as determined by the inter-margin distance (IMD), on joint space narrowing (JSN).MethodsBaseline and 12-month X-rays of 590 knees with Kellgren and Lawrence grade (KLG) 2/3 OA from the public-release dataset of the Osteoarthritis Initiative (OAI) were assigned to subgroups based upon IMD at baseline (IMDBL) and the difference between IMDBL and IMD12mos. Relationships of JSN to IMDBL and to the difference between IMDBL and IMD12mos were evaluated.ResultsIn all 590 knees, mean JSN was 0.13±0.51mm (P<0.0001) and MTP alignment and replication of IMDBL in the 12-month film were, in general, poor. JSN was significantly (P=0.012) more rapid in Subgroup A (IMD≤1.70mm at both time points) than in Subgroup B (both IMDs>1.70mm): 0.15±0.43; 0.08±0.47. Within Subgroup B we identified a subset, Subgroup B1, in which, although alignment was poor at both time points, the large IMDBL was, by chance, highly reproduced by IMD12mos (difference between the two IMDs=0.01±0.27mm, NS). JSN in Subgroup B1 was 0.06±0.41mm and did not differ from that in other knees of Subgroup B (P=0.87). The standardized response mean (SRM) in all 590 knees and Subgroups A, B and B1 was 0.25, 0.34, 0.17 and 0.06, respectively. Independent of IMDBL, JSN correlated significantly with the difference between the IMDs in the two radiographs (r=0.17, P=0.0001).ConclusionSkewed MTP alignment in serial films and poor replication of IMDBL in the follow-up exam affect JSN measurement. The magnitude of change in joint space width (JSW) related to the poor quality of alignment that is common with the FF view jeopardizes accurate evaluation of JSN

    Yield scaling, size hierarchy and fluctuations of observables in fragmentation of excited heavy nuclei

    Get PDF
    Multifragmentation properties measured with INDRA are studied for single sources produced in Xe+Sn reactions in the incident energy range 32-50 A MeV and quasiprojectiles from Au+Au collisions at 80 A MeV. A comparison for both types of sources is presented concerning Fisher scaling, Zipf law, fragment size and fluctuation observables. A Fisher scaling is observed for all the data. The pseudo-critical energies extracted from the Fisher scaling are consistent between Xe+Sn central collisions and Au quasi-projectiles. In the latter case it also corresponds to the energy region at which fluctuations are maximal. The critical energies deduced from the Zipf analysis are higher than those from the Fisher analysis.Comment: 30 pages, accepted for publication in Nuclear Physics A, references correcte

    Fragment properties of fragmenting heavy nuclei produced in central and semi-peripheral collisions

    Get PDF
    Fragment properties of hot fragmenting sources of similar sizes produced in central and semi-peripheral collisions are compared in the excitation energy range 5-10 AMeV. For semi-peripheral collisions a method for selecting compact quasi-projectiles sources in velocity space similar to those of fused systems (central collisions) is proposed. The two major results are related to collective energy. The weak radial collective energy observed for quasi-projectile sources is shown to originate from thermal pressure only. The larger fragment multiplicity observed for fused systems and their more symmetric fragmentation are related to the extra radial collective energy due to expansion following a compression phase during central collisions. A first attempt to locate where the different sources break in the phase diagram is proposed.Comment: 23 pages submitted to NP

    Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector

    Full text link
    Originally designed as a new nuclear reactor monitoring device, the Nucifer detector has successfully detected its first neutrinos. We provide the second shortest baseline measurement of the reactor neutrino flux. The detection of electron antineutrinos emitted in the decay chains of the fission products, combined with reactor core simulations, provides an new tool to assess both the thermal power and the fissile content of the whole nuclear core and could be used by the Inter- national Agency for Atomic Energy (IAEA) to enhance the Safeguards of civil nuclear reactors. Deployed at only 7.2m away from the compact Osiris research reactor core (70MW) operating at the Saclay research centre of the French Alternative Energies and Atomic Energy Commission (CEA), the experiment also exhibits a well-suited configuration to search for a new short baseline oscillation. We report the first results of the Nucifer experiment, describing the performances of the 0.85m3 detector remotely operating at a shallow depth equivalent to 12m of water and under intense background radiation conditions. Based on 145 (106) days of data with reactor ON (OFF), leading to the detection of an estimated 40760 electron antineutrinos, the mean number of detected antineutrinos is 281 +- 7(stat) +- 18(syst) electron antineutrinos/day, in agreement with the prediction 277(23) electron antineutrinos/day. Due the the large background no conclusive results on the existence of light sterile neutrinos could be derived, however. As a first societal application we quantify how antineutrinos could be used for the Plutonium Management and Disposition Agreement.Comment: 22 pages, 16 figures - Version

    The Scientific Performance of the Microchannel X-ray Telescope on board the SVOM Mission

    Full text link
    The Microchannel X-ray Telescope (MXT) will be the first focusing X-ray telescope based on a "Lobster-Eye" optical design to be flown on Sino-French mission SVOM. SVOM will be dedicated to the study of Gamma-Ray Bursts and more generally time-domain astrophysics. The MXT telescope is a compact (focal length ~ 1.15 m) and light (< 42 kg) instrument, sensitive in the 0.2--10 keV energy range. It is composed of an optical system, based on micro-pore optics (MPOs) of 40 micron pore size, coupled to a low-noise pnCDD X-ray detector. In this paper we describe the expected scientific performance of the MXT telescope, based on the End-to-End calibration campaign performed in fall 2021, before the integration of the SVOM payload on the satellite.Comment: 22 pages, 12 figures, accepted for publication in Experimental Astronom

    Fifteen years SIB Swiss Institute of Bioinformatics: life science databases, tools and support.

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) was created in 1998 as an institution to foster excellence in bioinformatics. It is renowned worldwide for its databases and software tools, such as UniProtKB/Swiss-Prot, PROSITE, SWISS-MODEL, STRING, etc, that are all accessible on ExPASy.org, SIB's Bioinformatics Resource Portal. This article provides an overview of the scientific and training resources SIB has consistently been offering to the life science community for more than 15 years
    corecore