1,400 research outputs found

    A Procedure to Calibrate a Multi-Modular Telescope

    Full text link
    A procedure has been developed for the charge, mass and energy calibration of ions produced in nuclear heavy ion reactions. The charge and mass identification are based on a Δ\DeltaE-E technique. A computer code determines the conversion from ADC channels into energy values, atomic number and mass of the detected fragments by comparing with energy loss calculations through a minimization routine. The procedure does not need prior measurements with beams of known energy and charge. An application of this technique to the calibration of the MULTICS apparatus is described.Comment: 9 pages, Tex file, 3 postscript figures available upon request from [email protected]; to appear in Nucl. Inst. Met

    Effect of temperature on the mechanical characteristics of bicycle tyres

    Get PDF
    Bicycles are becoming always more popular as a cheap and healthy tool for urban travels. The concerns fĂĽr crowded public transport means are changing the habits after the pandemic situation caused by Covid-19, encomaging people towards the use of bicycle. As stated in literature, tyres play a large role in the handling ofbicycles . This is why it is necessary to characterize tyres so as to derive useful parameters for modeling. To this purpose, proper experimental methods have been implemented for bicycle tyres. A deepen knowledge of the phenomena occurring at tyre/road contact patch is indeed fundamental to ensure proper adherence and safety conditions, especiatly for vehicles as bicycles or motorcycles working with high camber angles. This paper aims at enabling the future development of bicycle tyres, in order to improve the safety and the performances. Specifically, the focus is devoted to understand how the road temperature can impact on tyre performances, and therefore on bicycle handling. After a brief section describing the methods and instruments used fĂĽr this research activity, the results of an experimental campaign carried out on road racing tyre are presented and discussed. The remarkable variation of temperature oftyre rolling surface can have multiple impacts on the performances. lt can affect the noise emissions as weil as rolling resistance, as noted in, where higher temperature was co.rrelated to lower rolling resistance coefficient. In the temperatu.re influence on car tyre lateral characteristics is investigated on a drum testrig. A They found a decrease in cornering stiffness as temperature increases, while no particular variations on relaxation length were observed. Despite the known influence of the temperature on tyre properties, there is a lack of studies regarding bicycle tyres. In a test on testrig of wintertype tyre revealed remarkable differences with respect to the mechanical characteristics of other tyres tested at room temperature. This may suggest the important role played by temperature on bicycle tyres characteristics, thus affecting the tyre/road interaction

    Calamintha incana (Sm.) Helder: A New Phytoextract with In Vitro Antioxidant and Antidiabetic Action

    Get PDF
    This study aimed to assess the antioxidant and antidiabetic properties of ethanolic phytoextracts of Calamintha incana (Sm.) Helder leaves. Initially, the chemical characterization of the phytocomplex was performed using high-performance liquid chromatography (HPLC)/mass spectrometry (MS). The cytotoxicity of the ethanolic extract was assessed using an MTT assay in HepG2 cells. Subsequently, antioxidant activity was evaluated using a DPPH test. Finally, enzymatic tests with alpha-amylase, alpha-glucosidase, pancreatic lipase, and dipeptidyl peptidase IV (DPP-IV) were performed to evaluate their effects on glucose metabolism. The chemical composition of the extract is p-linolenic acid (13.2%), myristic acid (12.1%), and p-cymene (10.5%). The extract demonstrated low toxicity, with none of the tested concentrations inducing 50% cell death. Furthermore, the ethanolic extract revealed potent antioxidant activity using DPPH (IC50 was 35.9 +/- 0.7 mu g/mL) and reducing power capacity (IC50 was 90.3 +/- 0.8 mu g/mL). Regarding the antidiabetic activity, the extract caused a significant inhibition of alpha-amylase, alpha-glucosidase (IC50 46.3 +/- 0.2, 56.8 +/- 0.1 mu g/mL, respectively), weak inhibition of pancreatic lipase and no notable inhibition of dipeptidyl peptidase IV. In conclusion, C. incana has antioxidant and antidiabetic properties and appears to exert insulin-independent hypoglycemic action

    Thermal Management of Electrified Vehicles—A Review

    Get PDF
    Vehicle electrification demands a deep analysis of the thermal problems in order to increase vehicle efficiency and battery life and performance. An efficient thermal management of an electrified vehicle has to involve every system of the vehicle. However, it is not sufficient to optimize the thermal behavior of each subsystem, but thermal management has to be considered at system level to optimize the global performance of the vehicle. The present paper provides an organic review of the current aspects of thermal management from a system engineering perspective. Starting from the definition of the requirements and targets of the thermal management system, each vehicle subsystem is analyzed and related to the whole system. In this framework, problems referring to modeling, simulation and optimization are considered and discussed. The current technological challenges and developments in thermal management are highlighted at vehicle and component levels

    Effect of Light, Temperature, Salinity, and Halopriming on Seed Germination and Seedling Growth of Hibiscus sabdariffa under Salinity Stress

    Get PDF
    Salt stress is a serious and current global problem for crops. Due to climate change, the soil today has higher salinity levels than in past decades. Identifying temperature, light, and salinity that allow plants to germinate and grow is an ambitious challenge for the future. Hibiscus sabdariffa (H. sabdariffa) is a plant that undergoes abiotic stress during all stages of growth. The aim of this work was to identify the best conditions in terms of light, temperature, and salinity during the germination and growth phases of H. sabdariffa. To improve the germination of H. sabdariffa seed, the effects of abiotic stress were investigated in three experiments. In the first experiment, the factors included light at two levels (light and dark cycles) and temperature at eight levels (5, 10, 15, 20, 25, 30, 35, and 40 °C). In the second experiment, the effect of salinity was examined at seven levels (0, 30, 60, 90, 120, 150, and 180 mM NaCl). In the third experiment, the factors consisted of seed halopriming at two levels (0 and 180 mM NaCl for 24 h) and salinity at seven levels (0, 30, 60, 90, 120, 150, and 180 mM NaCl). The highest germination rate (GR), seedling dry weight, and uniformity of germination were obtained at 30 °C in dark conditions, as reported by one-way Anova analysis. Germination was restricted by temperatures lower and higher than 5 and 30 °C, respectively. By increasing the salinity, all the germination characteristics were decreased, but these effects were less pronounced by halopriming. The most suitable planting date was in the spring, when the temperature was in the range of 25–35 °C. During the germination stage, Hibiscus tea is sensitive to low salinity soils. Halopriming can be performed for enhancing GR and emergence percentage

    Stationary Wavelet Processing and Data Imputing in Myoelectric Pattern Recognition on a Low-Cost Embedded System

    Get PDF
    Pattern recognition-based decoding of surface electromyography allows for intuitive and flexible control of prostheses but comes at the cost of sensitivity to in-band noise and sensor faults. System robustness can be improved with wavelet-based signal processing and data imputing, but no attempt has been made to implement such algorithms on real-time, portable systems. The aim of this work was to investigate the feasibility of low-latency, wavelet-based processing and data imputing on an embedded device capable of controlling upper-arm prostheses. Nine able-bodied subjects performed Motion Tests while inducing transient disturbances. Additional investigation was performed on pre-recorded Motion Tests from 15 able-bodied subjects with simulated disturbances. Results from real-time tests were inconclusive, likely due to the low number of disturbance episodes, but simulated tests showed significant improvements in most metrics for both algorithms. However, both algorithms also showed reduced responsiveness during disturbance episodes. These results suggest wavelet-based processing and data imputing can be implemented in portable, real-time systems to potentially improve robustness to signal distortion in prosthetic devices with the caveat of reduced responsiveness for the typically short duration of signal disturbances. The trade-off between large-scale signal corruption robustness and system responsiveness warrants further studies in daily life activities

    Evaluation of computer-based target achievement tests for myoelectric control

    Get PDF
    Real-Time evaluation of novel prosthetic control schemes is critical for translational research on artificial limbs. Recently, two computer-based, real-Time evaluation tools, the target achievement control (TAC) test and the Fitts' law test (FLT), have been proposed to assess real-Time controllability. Whereas TAC tests provides an anthropomorphic visual representation of the limb at the cost of confusing visual feedback, FLT clarifies the current and target locations by simplified non-Anthropomorphic representations. Here, we investigated these two approaches and quantified differences in common performance metrics that can result from the chosen method of visual feedback. Ten able-bodied and one amputee subject performed target achievement tasks corresponding to the FLT and TAC test with equivalent indices of difficulty. Ablebodied subjects exhibited significantly (p <0.05) better completion rate, path efficiency, and overshoot when performing the FLT, although no significant difference was seen in throughput performance. The amputee subject showed significantly better performance in overshoot at the FLT, but showed no significant difference in completion rate, path efficiency, and throughput. Results from the FLT showed a strong linear relationship between the movement time and the index of difficulty (R2 D 0:96), whereas TAC test results showed no apparent linear relationship (R2 D 0:19). These results suggest that in relatively similar conditions, the confusing location of virtual limb representation used in the TAC test contributed to poorer performance. Establishing an understanding of the biases of various evaluation protocols is critical to the translation of research into clinical practice

    Stationary wavelet processing and data imputing in myoelectric pattern recognition on a low-cost embedded system

    Get PDF
    Pattern recognition-based decoding of surface electromyography allows for intuitive and flexible control of prostheses but comes at the cost of sensitivity to in-band noise and sensor faults. System robustness can be improved with wavelet-based signal processing and data imputing, but no attempt has been made to implement such algorithms on real-time, portable systems. The aim of this work was to investigate the feasibility of low-latency, wavelet-based processing and data imputing on an embedded device capable of controlling upper-arm prostheses. Nine able-bodied subjects performed Motion Tests while inducing transient disturbances. Additional investigation was performed on pre-recorded Motion Tests from 15 able-bodied subjects with simulated disturbances. Results from real-time tests were inconclusive, likely due to the low number of disturbance episodes, but simulated tests showed significant improvements in most metrics for both algorithms. However, both algorithms also showed reduced responsiveness during disturbance episodes. These results suggest wavelet-based processing and data imputing can be implemented in portable, real-time systems to potentially improve robustness to signal distortion in prosthetic devices with the caveat of reduced responsiveness for the typically short duration of signal disturbances. The trade-off between large-scale signal corruption robustness and system responsiveness warrants further studies in daily life activities

    Traction motors for electric vehicles: Maximization of mechanical efficiency – A review

    Get PDF
    With the accelerating electrification revolution, new challenges and opportunities are yet emerging, despite range anxiety is still one of the biggest obstacles. Battery has been in the spotlight for resolving this problem, but other critical vehicle components such as traction motors are the key to efficient propulsion. Traction motor design involves a multidisciplinary approach, with still significant room for improvement in terms of efficiency. Therefore, this paper provides a comprehensive review of scientific literature looking at various aspects of traction motors to maximize mechanical efficiency for the application to high-performance Battery Electric Vehicles. At first, and overview on the mechanical design of electric motors is presented, focusing on topology selection, efficiency, transmission systems, and vehicle layouts; Special attention is then paid to the thermal management, as it is one of the main aspects that affects the global efficiency of such machines; thirdly, the paper presents a discussion on possible future trends to tackle ongoing challenges and to further enhance the performance of traction motors
    • …
    corecore