330 research outputs found

    Insensitivity to loss predicts apathy in Huntington's disease

    Get PDF
    Background Apathy is a deficit in goal‐directed behavior that significantly affects quality of life and function. It is common in Huntington's disease and other disorders affecting corticostriatal pathways. Deficits in processing of reward, altered effort, and executive dysfunction are associated with apathy in other disorders, but the cognitive processes leading to apathy in Huntington's disease remain largely unknown. A previously reported deficit in learning from losses in Huntington's disease raises the possibility of a hitherto unrecognized mechanism leading to apathy. This study's objective was to delineate the cognitive processes associated with apathy in HD. Methods We tested 51 Huntington's disease participants and 26 controls on a battery of novel and established measures to assess the contribution to apathy in Huntington's disease of executive function, reward value, reward‐effort calculations, instrumental learning, and response to reward and loss. Results Huntington's disase participants had deficits in instrumental learning with impaired response to loss, but no evidence to suggest altered reward‐related behavior or effort. We also saw an executive dysfunction contribution to apathy in Huntington's disease. Discussion We report the novel finding that apathy in Huntington's disease is associated with blunted responses to losses and impaired instrumental learning. This association is consistent with the known early degeneration of the indirect pathway and amygdala involvement in apathy in Huntington's disease, but is previously unreported in any disorder. In keeping with the comparative preservation of the ventral striatum and orbitofrontal cortex in Huntington's disease, reward valuation and reward‐effort calculations did not contribute to apathy

    A eukaryote assemblage intercalated with Marinoan glacial deposits in South Australia

    Get PDF
    Video of digital X-ray tomographs (”CT) in longitudinal plane through cylinder of siltstone, maximum diameter seen (left to right when viewing movie) is 5.4m

    3D macro- and microfabric analyses of Neoproterozoic diamictites from the Valjean Hills, California (United States)

    Get PDF
    The Cryogenian interval (720–635 Ma) is famous for a rich archive of diamictites, many of which were deposited during glaciations. Classic examples are exposed in the Kingston Peak Formation of the Valjean Hills, near Death Valley (United States), with previous work pointing to multiple glacial cycles in other outcrop belts. Within any glacial period, diamictites are widespread, and in addition, their mechanics of deposition are highly variable. Some are massive in appearance at outcrop or in hand specimens and apparently lack any information that allows their mode of emplacement to be elucidated. Yet, the correct interpretation for deep-time successions in this area is especially important, since it is debated whether the diamictites are either associated with a tectonically driven origin, associated with rifting at the south-western Laurentian margin alongside slope-controlled gravitational mass movement, or predominantly deposited as (sub)glacial diamictites. In this paper, we demonstrate how diamictite texture can be objectively quantified based on clast orientations, at both macroscale and microscale (micromorphology), guiding interpretations. Our method is based on a technique used for Quaternary sediments, by mapping the apparent longest axes of skeleton grains (ranging from fine-grained sand to fine-grained pebbles) in oriented thin sections and reconstructing their microfabric in a 3D space coupled with macrofabric data for each diamictite. In this way, we could identify a bimodal signal in the orientation of the longest axes for each sample. Evidence for shearing and soft sediment deformation supports either subaqueous or subglacial deposition with deformation induced by basal sliding with a paleoflow directed toward the southeast. Our combined approach of micro- and macrofabric analyses can also encourage acquiring accurate fabric data for seemingly structureless diamictites from other deep-time rock archives in an objective manner

    New Perspectives on Glacial Geomorphology in Earth's Deep Time Record

    Get PDF
    International audienceThe deep time (pre-Quaternary) glacial record is an important means to understand the growth, development, and recession of the global cryosphere on very long timescales (10 6-10 8 Myr). Sedimentological description and interpretation of outcrops has traditionally played an important role. Whilst such data remain vital, new insights are now possible thanks to freely accessible aerial and satellite imagery, the widespread availability and affordability of Uncrewed Aerial Vehicles, and accessibility to 3D rendering software. In this paper, we showcase examples of glaciated landscapes from the Cryogenian, Ediacaran, Late Ordovician and Late Carboniferous where this approach is revolutionizing our understanding of deep time glaciation. Although some problems cannot be overcome (erosion or dissolution of the evidence), robust interpretations in terms of the evolving subglacial environment can be made. Citing examples from Australia (Cryogenian), China (Ediacaran), North and South Africa (Late Ordovician, Late Carboniferous), and Namibia (Late Carboniferous), we illustrate how the power of glacial geomorphology can be harnessed to interpret Earth's ancient glacial record

    Bird’s-eye view of an Ediacaran subglacial landscape

    Get PDF
    Depositional evidence for glaciation (dropstones, diamictites) is common in Neoproterozoic strata, and often debated, but erosional evidence (e.g., unconformities cut directly by ice) is rare. Only two such unconformities are known to have been well preserved globally from the Ediacaran Period (in western Australia and central China). This paper provides the first full description of a spectacular subglacial landscape carved beneath ice masses in the Shimengou area of central China, with classical subglacial bed forms including general faceted forms, mĂŒschelbruche, cavetto, spindle forms, and striations that testify to an abundance of meltwater during subglacial erosion. These features were produced during the southward, somewhat sinuous, flow of a temperate to polythermal ice mass

    Conceptualising sustainability in UK urban Regeneration: a discursive Formation

    Get PDF
    Despite the wide usage and popular appeal of the concept of sustainability in UK policy, it does not appear to have challenged the status quo in urban regeneration because policy is not leading in its conceptualisation and therefore implementation. This paper investigates how sustainability has been conceptualised in a case-based research study of the regeneration of Eastside in Birmingham, UK, through policy and other documents, and finds that conceptualisations of sustainability are fundamentally limited. The conceptualisation of sustainability operating within urban regeneration schemes should powerfully shape how they make manifest (or do not) the principles of sustainable development. Documents guide, but people implement regeneration—and the disparate conceptualisations of stakeholders demonstrate even less coherence than policy. The actions towards achieving sustainability have become a policy ‘fix’ in Eastside: a necessary feature of urban policy discourse that is limited to solutions within market-based constraints

    Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation

    Get PDF
    Two global glaciations occurred during the Neoproterozoic. Snowball Earth theory posits that these were terminated after millions of years of frigidity when initial warming from rising atmospheric CO2 concentrations was amplified by the reduction of ice cover and hence a reduction in planetary albedo. This scenario implies that most of the geological record of ice cover was deposited in a brief period of melt-back. However, deposits in low palaeo-latitudes show evidence of glacial–interglacial cycles. Here we analyse the sedimentology and oxygen and sulphur isotopic signatures of Marinoan Snowball glaciation deposits from Svalbard, in the Norwegian High Arctic. The deposits preserve a record of oscillations in glacier extent and hydrologic conditions under uniformly high atmospheric CO2 concentrations. We use simulations from a coupled three-dimensional ice sheet and atmospheric general circulation model to show that such oscillations can be explained by orbital forcing in the late stages of a Snowball glaciation. The simulations suggest that while atmospheric CO2 concentrations were rising, but not yet at the threshold required for complete melt-back, the ice sheets would have been sensitive to orbital forcing. We conclude that a similar dynamic can potentially explain the complex successions observed at other localities
    • 

    corecore