
Aberystwyth University

Sequencing the Sturtian icehouse
Busfield, M. E.; Le Heron, D. P.

Published in:
Journal of the Geological Society

DOI:
10.1144/jgs2013-067

Publication date:
2014

Citation for published version (APA):
Busfield, M. E., & Le Heron, D. P. (2014). Sequencing the Sturtian icehouse: Dynamic ice behaviour in South
Australia. Journal of the Geological Society, 171(3), 443-456. https://doi.org/10.1144/jgs2013-067

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

https://doi.org/10.1144/jgs2013-067
https://pure.aber.ac.uk/portal/en/persons/marie-busfield(c8083e7d-be31-4d37-a352-697961dde378).html
https://pure.aber.ac.uk/portal/en/publications/sequencing-the-sturtian-icehouse(42dd6d6e-e698-4317-a6eb-619bcca4d5b6).html
https://pure.aber.ac.uk/portal/en/publications/sequencing-the-sturtian-icehouse(42dd6d6e-e698-4317-a6eb-619bcca4d5b6).html
https://doi.org/10.1144/jgs2013-067


Sequencing the Sturtian icehouse: dynamic ice behaviour in South Australia 1 

M.E. BUSFIELD1*, D.P. LE HERON1 2 

1Department of Earth Sciences, Royal Holloway, University of London, Egham, TW20 0EX, United 3 
Kingdom 4 

*Corresponding author (email: Marie.Busfield.2011@live.rhul.ac.uk) 5 

 6 

Abstract 7 

The Cryogenian record of South Australia houses the type region of the Sturtian glaciation, the 8 

oldest of three pan-global icehouse intervals during the Neoproterozoic. Data are presented from 9 

previously little described sections at Holowilena Creek, Oladdie Creek and Hillpara Creek in the 10 

central and southern Flinders Ranges, where five facies associations are recognized. These are (i) 11 

diamictite and conglomerate, (ii) interbedded heterolithics, (iii) hummocky cross-stratified 12 

sandstone, (iv) lonestone-bearing siltstone, and (v) ferruginous siltstone and sandstone. The 13 

succession reveals significant lateral and vertical facies variation, which is linked to a complex 14 

inherited palaeotopography and distance from the sediment source. Repeated stratigraphic 15 

occurrences of striated clasts and abundant ice-rafted debris strongly support recurrent glacial 16 

influence on sedimentation. The intercalation of gravitationally re-worked diamictites, dropstone-17 

bearing siltstone and dropstone-free siltstone testifies to dynamic sedimentation within a 18 

periodically glacially-influenced subaqueous environment. Sequence stratigraphic analysis 19 

identifies four glacial advance systems tracts (GAST), separated by three glacial retreat systems 20 

tracts (GRST), wherein hummocky cross-stratified sandstones attest to open water conditions. 21 

These findings support dynamic ice sheet behaviour in South Australia, and provide clear evidence 22 

for repeated intra-Sturtian ice sheet recession. 23 

 24 

 25 

 26 



Introduction 27 

Two Neoproterozoic icehouse intervals have long been recognised in South Australia (Mawson & 28 

Sprigg, 1950), namely the older Sturtian and younger Marinoan glaciations, so named after the Sturt 29 

Gorge and Marino Rocks of Adelaide’s outer suburbs (Preiss et al., 1998). The recognition of 30 

broadly age-equivalent deposits worldwide contributed to the development of the snowball Earth 31 

hypothesis (Hoffman et al., 1998; Hoffman & Schrag, 2002), wherein two distinct episodes of 32 

severe pan-global glaciation enabled ice sheets to extend to low palaeolatitudes, resulting in a 33 

supressed hydrological cycle. Recent studies, however, support a considerably more dynamic 34 

cryosphere, with fluctuating ice margins, open water areas, and abundant evidence of hydrological 35 

activity (e.g. Etienne et al., 2007; Arnaud et al., 2011 and refs therein). Moreover, new age 36 

constraints, and their likely error bars, cast doubt on the pan-global synchronicity of these glacial 37 

events (e.g. Allen & Etienne, 2008; Condon & Bowring, 2011), and hence their two-fold 38 

subdivision as ‘Sturtian’ or ‘Marinoan’. This holds significant bearing on the Neoproterozoic 39 

glacial deposits of South Australia, widely considered as the type area of the Sturtian icehouse 40 

period (Hoffman & Schrag, 2002). 41 

The Adelaide Fold Belt of South Australia (Figs. 1-2) exposes an extremely thick succession of 42 

diamictite, sandstone and siltstone, thought to have accumulated during the Sturtian glaciation. The 43 

glacial affinity of these sediments was first proposed by Howchin (1901), arguing in favour of 44 

glaciomarine deposition (Howchin, 1908), although correlative sections were subsequently 45 

interpreted as terrestrial glacial deposits by Mawson (1941, 1949). Detailed examination of sections 46 

in the northern Flinders Ranges and Mount Painter area by Link and Gostin (1981) and Young and 47 

Gostin (1988, 1989, 1990, 1991) heralded a return to the glaciomarine hypothesis. The latter studies 48 

identify a four-fold stratigraphic subdivision, consisting of two principal diamictite units, each 49 

overlain by a succession of siltstones and sandstones, interpreted to record two glacial cycles within 50 

the Sturtian interval. The thickness of studied sections varies considerably across the region from a 51 



few hundred metres, to a purported 6000 m in the Yudnamutana Trough (Fig. 2), attributed either to 52 

the development of subglacial palaeovalleys, to active extensional tectonics, or a combination of the 53 

above (Young & Gostin, 1990, 1991; Preiss, 2000). 54 

Comparatively few detailed sedimentological studies have been conducted on the Sturtian deposits 55 

of the central and southern Flinders Ranges. Regional mapping identifies a major fault-bound 56 

depocentre in the Barratta Trough (Fig. 2), where Sturtian sediments attain an estimated thickness 57 

of 4000 m (Preiss, 1999, and refs therein), thinning to a few hundred metres in adjacent shelf areas 58 

(Preiss et al., 1993). Recent work by Le Heron et al. (2011a, b) at Holowilena Creek, in the central 59 

Flinders Ranges, records a thick (>800 m) succession of heterogeneous glacigenic strata, with 60 

abundant evidence of striated erratic clasts and ice-rafted debris (IRD). Significantly, the occurrence 61 

of dropstone-free, hummocky cross-stratified sediments punctuating the succession is interpreted as 62 

an interglacial sequence during the Sturtian interval, pointing to major ice sheet fluctuation. 63 

This paper will build upon earlier work by Le Heron et al. (2011a, b) at Holowilena Creek, and 64 

present high resolution datasets for correlative sections at Oladdie Creek and Hillpara Creek, 65 

approximately 60 km further south and south-east (Fig. 1), previously described only at the 66 

reconnaissance level by Binks (1968). These sections enable the facies variability of ice-proximal to 67 

more ice-distal settings to be examined, and the influence of pre-existing topographic relief to be 68 

tested. A new sedimentary model is presented which frames the development of the diamictite-69 

bearing successions in a glacial sequence stratigraphic context.  70 

Study area and stratigraphy 71 

The studied sedimentary successions belong to the mid Cryogenian Yudnamutana Subgroup, at the 72 

base of the Umberatana Group (Fig. 3). In the Adelaide Fold Belt, these sediments rest with angular 73 

unconformity upon sandstones and siltstones of the underlying Burra Group (Coats & Preiss, 1987). 74 

Stratigraphic nomenclature is highly variable across the region, but typically includes a basal 75 



diamictite-dominated unit, namely the Bolla Bollana Formation to the north, the Pualco Tillite in 76 

the central regions, the Appila Tillite further south, or the Sturt Tillite in the type-section of the 77 

Adelaide Hills. These pass upwards into more heterogeneous diamictite, sandstone and siltstone 78 

facies of the Wilyerpa Formation in the central region, or the Lyndhurst Formation to the north. 79 

These deposits are in turn blanketed by the post-glacial Tindelpina Shale Member of the Tapley Hill 80 

Formation throughout the Adelaide Fold Belt (Fig. 3). Re-Os dating of the Tindelpina Shale 81 

Member provides a minimum age constraint of 643 ± 2.4 Ma for the Yudnamutana Subgroup 82 

(Kendall et al., 2006), further corroborated by a U-Pb zircon date of 659 ± 6 Ma derived from a 83 

volcaniclastic horizon towards the top of the Wilyerpa Formation (Fanning & Link, 2006). 84 

In places, ironstone facies characterise the lower Yudnamutana Subgroup, ascribed to the 85 

Holowilena Ironstone Formation in the study area (Fig. 3), or its correlative the Braemar Ironstone 86 

Formation to the east (Forbes, 1989). The Holowilena Ironstone is variously interpreted as 87 

overlying the Pualco Tillite, (and equivalent Appila Tillite), or alternatively considered as laterally 88 

correlative (Preiss et al. 1993 and refs within). In view of this, we adopt the term ‘Holowilena 89 

Ironstone’ in reference to the distinctly ferruginous facies. The terms ‘Pualco Tillite’ and ‘Wilyerpa 90 

Formation’ will be adopted to describe the underlying and overlying sedimentary facies, 91 

respectively. 92 

The study areas occur within broadly NE-SW trending outcrop belts which span the Parachilna and 93 

Orroroo map sheets (Fig. 1; Binks, 1968; Preiss, 1999). The orientation of these outcrops is 94 

considered to reflect widespread Willouran to early Sturtian rifting (c. 830 Ma - <660 Ma; Preiss et 95 

al., 2011), in this region culminating in development of the Barratta Trough depocentre (Fig. 2). 96 

The studied sections to the west and south-west of this trough may thus be considered shallower 97 

‘shelf’ deposits (Preiss et al., 1993), accumulating within neighbouring sub-basins. The sediments 98 

subsequently underwent intracratonic deformation during the Cambrian-Ordovician Delamerian 99 

Orogeny, becoming incorporated in a series of continuous, relatively upright fold structures at the 100 



northern margin of the Nackara Arc (Preiss, 2000). The rocks of the study area are characterised by 101 

low grade, greenschist facies metamorphism (Preiss, 1995). The minimal metamorphic overprint 102 

thus permits detailed study of primary sedimentary facies and structures.  103 

Facies analysis 104 

Data are presented from three detailed logged sections at Holowilena Creek, Oladdie Creek and 105 

Hillpara Creek (Fig. 4). Exposure of the underlying Burra Group sediments permits regional 106 

correlation, whereas the overlying Tapley Hill Formation is only recorded at Oladdie Creek. 107 

Therefore, only minimum thicknesses are observed at Holowilena and Hillpara Creeks, although 108 

considerable thickness variations across the logged sections are demonstrable by correlation. Five 109 

facies associations are recognized, namely (i) diamictite and conglomerate, (ii) interbedded 110 

heterolithics, (iii) hummocky cross-stratified sandstone, (iv) lonestone-bearing siltstone, and (v) 111 

ferruginous siltstone and sandstone. 112 

Diamictite and conglomerate facies association 113 

This facies association makes up almost the entire section at Hillpara Creek, is notably dominant at 114 

Oladdie Creek, and constitutes less than 50% of the succession at Holowilena Creek. It is sandy 115 

throughout, and predominantly crudely stratified, with subsidiary massive and well stratified 116 

varieties. The conglomerate deposits commonly display normal grading, fining into diamictite 117 

deposits, whilst the latter include normal, reverse and non-graded varieties (Fig. 4). Erosive contacts 118 

are prevalent at the base of conglomerates and clast-rich diamictites (Fig. 5a). Outsized clasts range 119 

from c. 3-80 cm in size, typically 15-20 cm, and comprise limestone, dolostone, metasediments, 120 

basalt and granite. Clasts are predominantly sub-angular to sub-rounded in shape; striated forms 121 

locally occur. 122 



Downwarping and puncturing of laminae beneath pebble to boulder sized clasts is common (Fig. 123 

5b, c), particularly in the crudely stratified diamictites. Other outsized clasts frequently form turbate 124 

structures, where smaller clasts form circular alignments around a core stone or rigid matrix (Fig. 125 

5d, e), and are especially common where downwarping structures are rare. Lenticular siltstone and 126 

sandstone bodies locally occur, and are typically bed-parallel. However in places these lenses are 127 

highly deformed, forming tight to recumbent intrabed fold structures. 128 

Interpretation. The diamictite and conglomerate facies association is interpreted as a series of 129 

glacially-influenced, subaqueous sediment flow deposits. The common fining-upward motif and 130 

internal organisation of stacked conglomerate and diamictite deposits is typical of turbulence within 131 

the flow (Talling et al. 2012), representing high-density and more dilute turbidites, respectively. 132 

This is supported by the abundance of turbate structures, attributed to the generation of transient 133 

rotational eddies during turbulent flow (Phillips, 2006). Similar structures can be generated during 134 

subglacial shearing of diamictites (e.g. Busfield & Le Heron 2013, and refs within), but this 135 

interpretation is deemed unlikely in the absence of other shear-related features e.g. attenuated clasts, 136 

pressure shadows, galaxy structures. Massive and reverse graded diamictite deposits are interpreted 137 

as the product of glaciogenic debris flows (GDFs), which commonly generate inverse grading 138 

patterns through the combined influence of upward clast migration and kinetic sieving (Legros, 139 

2002; Benn & Evans, 2010; Talling et al., 2012). Erosive contacts at the base of many conglomerate 140 

and clast-rich diamictite units reflects repeated sediment flow emplacement, and resultant 141 

cannibalisation of underlying sediments. 142 

The close association of GDFs and turbidites likely reflects flow transformation during downslope 143 

movement, whereby mixing of the subaqueous debris flow with the overlying water body results in 144 

flow dilution (Benn & Evans, 2010; Talling et al., 2012), and hence a tendency towards more 145 

turbulent flow conditions. The generation of these ‘linked’ turbidity currents frequently occurs 146 

through transformation of moderate strength debris flows (Talling et al., 2012), and is a common 147 



process within ice-proximal and ice-contact regimes under rates of high sedimentation (Benn & 148 

Evans, 2010). This is consistent with the occurrence of tight to recumbent folded sand lenses, 149 

associated with slumping and sediment failure in response to rapid sediment delivery (Maltman, 150 

1994). Outsized clasts which downwarp and puncture underlying laminae are interpreted as ice-151 

rafted debris (IRD), wherein the preserved examples likely accumulated as sediment flows waned, 152 

thus restricting overprint of the structures under downslope remobilisation. The local occurrences of 153 

striated clasts provide further credence to the proposed glacigenic origin. 154 

Interbedded heterolithics facies association 155 

This facies association comprises a series of well stratified, dominantly interbedded siltstones, fine 156 

sandstones and coarse quartz arenites. It is most prominent in the Holowilena Creek section, 157 

constituting approximately 30% of the succession, diminishing to <10% in the Oladdie Creek 158 

deposits and c. 2% at Hillpara Creek (Fig. 4). No lonestones occur within this facies association. 159 

The deposits exhibit minimal grading; rarely sandstone interbeds fine upward into the overlying 160 

siltstone. Current ripple cross-lamination is common within the fine sandstone-siltstone interbeds 161 

(Fig. 6a), predominantly demonstrating palaeoflow towards the north. An isolated example of 162 

climbing ripple cross-lamination is recorded at Oladdie Creek. In places, the fine sandstone 163 

interbeds are deformed into largely bed-parallel discontinuous fold structures (Fig. 6b), other beds 164 

contain highly convolute lamination as well as load and flame structures (Fig. 6c). Conversely, the 165 

coarser quartzite interbeds are planar throughout, and exhibit no sedimentary structures at 166 

Holowilena or Oladdie, with limited evidence of small-pebble lined cross-bedding in the Hillpara 167 

Creek section (at ~75 m Log C, Fig. 4). 168 

Interpretation. The interbedded heterolithics facies association is interpreted as a finer grained 169 

series of sediment flow deposits, wherein the enhanced preservation of bedforms likely reflects 170 

reduced sediment concentrations compared to the coarser diamictite and conglomerate facies 171 



association. This may be a product of diminished sediment supply, which in tandem with the loss of 172 

the ice-rafting signature can be used to support periods of relative ice margin stability or retreat 173 

during deposition of the interbedded heterolithics. Within the coarser grained diamictite and 174 

conglomerate facies association, higher sediment concentrations and fall-out rates suppress the 175 

migration and preservation of delicate ripple structures (Sumner et al., 2008; Talling et al., 2012). 176 

However, as they move downslope, flows become more dilute through mixing with the water 177 

column, generating fully turbulent, low-density flows that enable the development of ripple cross-178 

lamination (Baas et al., 2011; Talling et al., 2012). Rare normally-graded sandstone interbeds are 179 

likewise interpreted to record deposition from turbulent underflows, succeeded by settling of 180 

hemipelagic silt material as the flows waned (e.g. Allen et al., 2004). The preservation of convolute 181 

lamination and climbing ripple cross-lamination at intervals reflects periods of more rapid turbidite 182 

deposition (Kuenen & Humbert, 1969; Allen, 1991; Baas, 2000; Jobe et al., 2012; Talling et al., 183 

2012). Similarly, folded sandstone and siltstone beds/lenses attest to downslope slumping and 184 

sediment instability induced by rapid sedimentation (Maltman, 1994). Load and flame structures 185 

attest to Rayleigh-Taylor instabilities initiated at a grain-size/bed interface (Allen, 1984; Collinson 186 

and Thompson, 1987). 187 

The coarser quartz arenite beds typically lack internal organisation, and are thus interpreted as non- 188 

or poorly-cohesive, clean sand debrites (Talling et al., 2012). An alternative mechanism of 189 

incremental accumulation via high-density turbidity currents is rejected owing to the absence of 190 

vertical and lateral grading (Kneller & Branney, 1995; Talling et al., 2012). Moreover, the 191 

prominent cross-bedded quartzite bed at Hillpara Creek (at ~75 m Log C, Fig. 4) pinches out 192 

sharply as opposed to gradationally, considered a characteristic feature of debris flow deposition 193 

(Johnson, 1970; Major & Iverson, 1999; Amy et al., 2005; Amy & Talling, 2006). The generation 194 

of dune-scale traction bedforms is also incompatible with rapid deposition from a high-density 195 

turbidity current (Kuenen, 1966; Middleton & Hampton, 1973; Talling et al., 2012). The prominent 196 



quartzite bed at Hillpara has been previously interpreted as a large ice-rafted erratic (Binks, 1968). 197 

However, in light of its bed-parallel orientation, the absence of associated impact-related 198 

deformation and its textural similarity to other quartzite interbeds at Holowilena and Oladdie, we 199 

prefer interpretation as a laterally discontinuous debrite. 200 

Hummocky cross-stratified sandstone facies association 201 

This facies association is restricted to the Holowilena Creek section (Log A, Fig. 4). Overall, the 202 

facies resemble those of the interbedded heterolithics facies association in that they comprise well 203 

stratified, non-graded fine sandstone and siltstone interbeds. They are distinguished, however, by 204 

the occurrence of hummocky cross-stratification (HCS) within many of the sandstone units (Fig. 205 

6d-e). The bedforms are predominantly isotropic, with subsidiary anisotropic components. Current 206 

ripple cross-laminated and convolute laminated sandstones are also intercalated within this facies 207 

association. Lonestones were not observed. 208 

Interpretation. The interbedded current rippled sandstones and laminated siltstones are interpreted 209 

to record turbulent underflow deposition and settling of hemipelagic fines, respectively, in concert 210 

with the interbedded heterolithics facies association. However, the presence of HCS attests to the 211 

interplay of storm wave oscillatory flow during deposition, within a shallow shelf environment 212 

(Cheel & Leckie, 1993; Johnson & Baldwin, 1996; Duke et al., 1991; Dumas & Arnott, 2006). Le 213 

Heron et al. (2011a, b) argue in favour of sea ice-free conditions at this time, as sea ice would 214 

inhibit the efficacy of storm wave agitation. Certainly these features attest to a sea ice minimum 215 

zone, where sufficient expanses of open water enable storm wave agitation, although the extent of 216 

ice meltback remains unclear. The absence of lonestones within this facies association is consistent 217 

with a lack of glacial influence on deposition. 218 

Lonestone-bearing siltstone facies association 219 



This facies association consists predominantly of planar laminated siltstone, with notably fewer 220 

sandstone beds than the interbedded heterolithics facies association. It is restricted to the 221 

Holowilena and Oladdie Creek sections, constituting <10% and <5% of the succession, respectively 222 

(Fig. 4). Downwarping of laminae beneath the outsized lonestones is common, in places piercing 223 

the laminae also (Fig. 6f). Rarely, lamina-parallel trains of lonestones are recorded, coincident with 224 

the absence of downwarping features. 225 

Interpretation. The predominance of planar laminated siltstone alongside minor sandstone interbeds 226 

is interpreted to record settling of hemipelagic fines, interrupted by isolated sand-rich sediment 227 

underflows. The presence of outsized lonestones which puncture and downwarp underlying laminae 228 

provides clear evidence of ice-rafting during deposition. Sediment flow ‘rafting’ of the lonestones 229 

(e.g. Postma et al., 1988; Eyles & Januszczak, 2007) is discounted on the basis of the fine grain size 230 

of the supporting material, which would lack the cohesive strength to transport cobble to boulder 231 

sized material. 232 

Ferruginous siltstone and sandstone facies association 233 

This facies association is again restricted to Holowilena Creek, and attains only 6 m in thickness in 234 

the studied section (Log A, Fig. 4). It comprises both massive and crudely stratified fine sandstone 235 

and siltstone, with few granule to small pebble sized clasts, which are locally associated with 236 

impact-related deformation at the micro-scale (Fig. 6g). No pebble or boulder sized lonestones were 237 

observed within this facies association. Sharp, undulose, bed-parallel layering is apparent in the 238 

siltstone unit (Fig. 6h), alongside an isolated asymmetric fold structure verging towards the south-239 

east (Fig. 6i).  240 

Interpretation. The ferruginous siltstone and sandstone facies association is tentatively interpreted 241 

to record similar styles of hemipelagic silt deposition and underflow sand emplacement as the 242 

lonestone bearing siltstone facies association. However, impact-related deformation beneath granule 243 



sized clasts at the micro-scale is interpreted to record early onset of ice-rafting processes. It is 244 

possible that the bed-parallel, undulose layering (Fig. 6h) may represent horizontal algal laminites, 245 

and by association an algal growth structure preserved in the asymmetric fold. This tentative 246 

interpretation is based on recognition of similar features observed in age-equivalent deposits of 247 

northern Namibia (Le Heron et al., 2013), but requires further investigation. 248 

The source of iron minerals within Neoproterozoic glacial successions remains highly contentious, 249 

and is considered beyond the scope of this study given its limited outcrop occurrence. Recent 250 

studies in South Australia support the intermixing of detrital terrestrial sediment and hydrothermal 251 

fluids (Lottermoser & Ashley, 2000; Cox et al., in press). In contrast to previous studies which 252 

advocate globally-widespread seawater anoxia (e.g. Kirschvink, 1992), the accumulation of 253 

abundant soluble iron, and hence deposition of iron-enriched sediments, is thought to occur under 254 

enhanced, not extreme anoxia and elevated Fe:S ratios (Cox et al., in press). 255 

Depositional cycles and glacial sequence stratigraphy 256 

The preceding facies analysis reveals a diverse accumulation of sediments both with and without 257 

evidence of glacial influence on deposition. Examination of the vertical grading of these facies 258 

associations, alongside changes in their lateral distribution, provides insight into their depositional 259 

history, and enables a sequence stratigraphic framework to be constructed. Sequence stratigraphic 260 

concepts are scarcely applied to glacial depositional systems (e.g. Proust & Deynoux, 1994; 261 

Brookfield & Martini, 1999; Powell & Cooper, 2002; El-ghali, 2005; Pedersen, 2012), largely due 262 

to the complexity of deciphering the influence of glacial fluctuations from changes in relative 263 

lake/sea-level. The term ‘glacial sequence stratigraphy’ is therefore used to denote a sequence 264 

stratigraphic model driven by glacier dynamics (Powell & Cooper, 2002), the effects of which are 265 

preserved independently of other external forces e.g. eustacy, isostacy. Glacial systems tracts (GST) 266 

are defined following the scheme of Powell & Cooper (2002). Systems tracts are subdivided into 267 



glacial advance (GAST) and glacial retreat (GRST) sequences, which may also include ice 268 

maximum (GMaST) and ice minimum (GMiST) conditions, respectively. Ten glacial systems tracts 269 

are recognized (Fig. 7), separated either by a glacial erosion surface (GES) or glacial bounding 270 

surface (GBS), the latter including the glacial advance surface (GAS) representing the onset of 271 

advance systems tracts, and the iceberg-rafting termination surface (ITS) representing the onset of 272 

retreat. 273 

The first sequence is restricted to the base of the Holowilena Creek section (Fig. 7), and constitutes 274 

striated clast-bearing sediment gravity flow deposits of the diamictite and conglomerate facies 275 

association, correlated to the Pualco Tillite. This sequence is attributed to the glacial advance 276 

systems tract (GAST 1) due to its characteristically thin exposure, and coarsening-upward motif 277 

(Powell & Cooper, 2002). The sequence is capped by an onlap surface, representing the first glacial 278 

bounding surface (GBS1), beneath sediments of the interbedded heterolithics facies association 279 

(Fig. 8a). This onlap surface is interpreted to reflect transgression following local ice meltback, 280 

demarcating the base of the first glacial retreat systems tract (GRST 1), consistent with the absence 281 

of glacigenic indicators (e.g. IRD) in the overlying heterolithic facies (Fig. 7). These sediments are 282 

overlain by the ferruginous siltstone and sandstone facies association, the Holowilena Ironstone. 283 

The first appearance of micro-scale IRD at this interval is interpreted as the glacial advance surface 284 

(GAS1; Powell & Cooper, 2002), and thus the overlying Holowilena Ironstone is interpreted as a 285 

thinly exposed remnant of the second GAST. 286 

The top of the Holowilena Ironstone is sharply truncated by a glacial erosion surface (GES1) in the 287 

Holowilena Creek section (Figs. 7 & 8b); a widely recognized disconformity throughout the 288 

Flinders Ranges (e.g. Coats, 1981; Preiss et al. 1993). The thin exposure of the underlying GAST 2 289 

likely reflects significant downcutting during development of the GES. The surface is correlated to 290 

the top of the pre-glacial Burra Group sediments at Oladdie Creek and Hillpara Creek based upon 291 

the absence of the underlying Pualco Tillite and Holowilena Ironstone, although no significant 292 



erosion surface was observed. The absence of a significant erosion surface in the proximal sections 293 

is likely attributed to re-working and erosion during subsequent sediment flow emplacement (during 294 

GRST 2), as opposed to marine ravinement, the effects of which would be expected to be more 295 

prominent in the distal sections, and accompanied by a transgressive lag, which is not present. 296 

Deposits of the glacial maximum systems tract (GMaST) are not recorded above the GES, as is 297 

typical of many temperate glacial systems (Powell & Cooper, 2002). Instead, at Holowilena and 298 

Oladdie, the overlying sediments of the Wilyerpa Formation correspond to a second phase of glacial 299 

retreat (GRST 2, Fig. 7). These comprise stacked, dominantly fining-upward deposits of the 300 

diamictite and conglomerate facies association and interbedded heterolithics facies association. The 301 

former contains repeated intervals of IRD, which are typically absent in the latter. This is 302 

interpreted as the product of pulsed collapse events at the ice front, driving coarser grained gravity 303 

flows and iceberg distribution into the basin, followed by periods of relative ice margin stability or 304 

retreat. During these intervals, the shelf becomes starved of coarser sediment, leading to deposition 305 

of finer grained sediment flow deposits, and ice-rafting processes are inhibited. 306 

Transition to an advance systems tract (GAST 3) is recorded above this sequence (at GBS2, Fig. 7), 307 

where coarser grained sediments of the diamictite and conglomerate facies association pre-308 

dominate, concomitant with a switch to a coarsening-upward motif. A pronounced inverse-grading 309 

event can be correlated across all three logged sections (Fig. 7: 260 m Log A, 62 m Log B, 18 m 310 

Log C), and at Holowilena is accompanied by a sudden influx of exotic pebble to boulder sized 311 

granite clasts (Fig. 8c). This event is interpreted to record ice maximum conditions (GMaST), 312 

resulting in high rates of sediment supply and delivery of extrabasinal erratic lithologies. At 313 

Holowilena and Oladdie a thin succession of normally-graded diamictite and conglomerate facies 314 

above GBS3 mark a return of the GRST (3), capped by an abrupt facies dislocation to thinly 315 

laminated siltstones (Fig. 7). This facies change is concurrent with the disappearance of IRD, and is 316 

thus identified as the iceberg-rafting termination surface (ITS1; Powell & Cooper, 2002). 317 



The retreat sequence above ITS1 is largely restricted to the Holowilena Creek section (Fig. 7), and 318 

comprises the hummocky cross-stratified sandstone facies association at the base, and interbedded 319 

heterolithics facies association above. The occurrence of hummocky cross-stratification in the basal 320 

sediments, requiring sufficient open waters and hence sea ice meltback to permit storm wave 321 

agitation (Le Heron et al. 2011a, b), is used to support ice minimum conditions (GMiST). 322 

Moreover, HCS is typically encountered within a shallow shelf setting (Cheel & Leckie, 1993; 323 

Johnson & Baldwin, 1996; Duke et al., 1991; Dumas & Arnott, 2006), and thus the absence of this 324 

facies association in the more proximal, shallower Oladdie Creek and Hillpara Creek sections may 325 

reflect a period of subaerial exposure and non-deposition in the proximal reaches during this retreat 326 

phase. The overlying interbedded heterolithic facies above GBS4 record an influx of coarser grained 327 

sand underflows within the Oladdie and Holowilena Creek sections, interpreted as the product of 328 

increased sediment instability in the source region, perhaps in response to initial, more proximal ice 329 

movement which may correspond to early GAST. However, the first appearance of IRD in the 330 

overlying laminated siltstones is taken as a more reliable indicator of initial advance (Powell & 331 

Cooper, 2002), identified as the second glacial advance surface (GAS2; Fig. 7). 332 

The overlying GAST 4 is initially characterised by stacked, thickly-bedded IRD-bearing diamictite 333 

and conglomerate at Hillpara Creek, normally-graded and thinly bedded diamictite and 334 

conglomerate separated by IRD-bearing siltstone at Oladdie Creek, and by IRD-bearing siltstone 335 

only at Holowilena Creek (Fig. 7). These facies associations reflect initial advance of the ice front, 336 

where coarse-grained glacially-influenced sediment flows are deposited in the more proximal 337 

regions (Hillpara), further downslope these sediment flows occur as pulsed events separated by 338 

periods of quiescence where ice-rafting processes dominate (Oladdie), and the distal regions remain 339 

starved of coarser-grained sediment, preserving only the ice-rafting signature (Holowilena). 340 

Towards the top of the succession, above GBS5, thickly-bedded and dominantly inverse graded 341 



diamictites, conglomerates and coarse-grained sandstones are preserved across all three logged 342 

sections, reflecting full glacial advance during late stage GAST 4, identified as the GMaST (Fig. 7). 343 

The upper contact of the Wilyerpa Formation, and cessation of glacially-influenced sedimentation, 344 

was observed only in the Oladdie Creek section (Fig. 7). Here, an erosional contact occurs at the 345 

base of a pebble to boulder-bearing conglomerate, with a distinct dark grey silt matrix, notably 346 

dissimilar to the pale brown sandy matrix of the underlying Wilyerpa Formation (Fig. 8d). The 347 

conglomerate is interpreted as a post-glacial transgressive lag, and is succeeded by a thick 348 

succession of laminated dark grey siltstones of the Tindelpina Shale Member, the basal unit of the 349 

Tapley Hill Formation. 350 

Discussion 351 

Sequence stratigraphic analysis of the studied sections in the central and southern Flinders Ranges 352 

identifies four distinct glacial advance sequences, separated by three intervals of ice meltback (Fig. 353 

7). The glacial influence on deposition (IRD) is pervasive throughout the Hillpara and Oladdie 354 

Creek sections. This is consistent with their more proximal position relative to the ice front (see Fig. 355 

9), corroborated by the predominance of coarser grained facies associations, as well as ripple cross-356 

lamination and soft sediment slump folding indicative of sediment supply from the south. The 357 

Holowilena Creek section represents the most ice-distal position, as indicated by the clear increase 358 

of fine grained facies. Deposition in the ice-proximal zone is proposed due to the dominance of 359 

sediment gravity flow and ice-rafting processes (Benn & Evans, 2010), with sediment accumulation 360 

on the shelf at Hillpara and Oladdie, and the slope at Holowilena (Fig. 9). 361 

The studied sections demonstrate considerable thickness variations, thickening by a few tens of 362 

metres from Hillpara to Oladdie, and by several hundred metres to Holowilena Creek (Fig. 7). This 363 

is attributed to significant palaeotopographic relief during deposition (see Fig. 9), the origin of 364 

which remains obscure. Previous studies have advocated accumulation of Sturtian glacigenic 365 



sediments within pre- and early syn-depositional rift basins (e.g. Preiss, 2000), whilst the presence 366 

of a distinct glacial erosion surface immediately above the Holowilena Ironstone may be used to 367 

support the interplay of subglacial downcutting (sensu Young & Gostin, 1990, 1991). Nonetheless, 368 

the palaeotopographic depression at Holowilena provided enhanced accommodation space for the 369 

preservation of non-glacially influenced regressive systems tracts, alongside protection from 370 

cannibalization under repeated sediment flow emplacement. In contrast, on the palaeotopographic 371 

highs at Oladdie and Hillpara (Fig. 9), relatively thin successions of stacked coarse-grained 372 

sediment flows likely underwent significant cannibalization and re-working during subsequent 373 

downslope movements, re-deposited basinward as flows waned, and hence glacial advance systems 374 

tracts are preferentially preserved. 375 

Previous studies in South Australia have also identified multiple advance-retreat sequences within 376 

the Sturtian record (e.g. Forbes, 1970; Forbes & Cooper, 1976; Coats & Preiss, 1987; Young & 377 

Gostin 1988, 1989, 1990, 1991; Le Heron et al., 2011b). The four-fold stratigraphic subdivision of 378 

Young & Gostin (1990, 1991) comprises two diamictite-dominated intervals, each overlain by 379 

mudstone-dominated facies, interpreted as glacial advance and retreat sequences, respectively. The 380 

uppermost mudstone-dominated interval, Unit 4 of Young & Gostin (1990), is regarded as a 381 

transitional unit between the diamictic deposits of Unit 3 and the shale-rich deposits of the post-382 

glacial Tapley Hill Formation. These considerations suggest the diamictites of the upper GMaST in 383 

the central and southern Flinders Ranges, overlain by the Tapley Hill Formation at Oladdie Creek 384 

(Fig. 7), correlate with Unit 3 of Young & Gostin (1990, 1991), and therefore Unit 4 is absent. The 385 

absence of Unit 4 from sequences in the Northern Flinders Basin (Young & Gostin, 1990) is 386 

attributed to non-deposition on topographically elevated regions, possibly in response to local 387 

tectonic and/or isostatic readjustments. This is considered plausible following the significant glacial 388 

advance recorded in the upper GMaST (this study) and Unit 3 (Young & Gostin, 1990, 1991). 389 

Furthermore, the basal GAST 1 and GRST 1 identified in the Holowilena Creek section are not 390 



recorded by Young & Gostin (1990, 1991). Previous studies in the Olary region to the east of the 391 

Orroroo map sheet, however, also recognize the basal Pualco Tillite as recording the glacial 392 

maximum of the first Sturtian glaciation (Forbes, 1989; Coats & Preiss, 1987). The absence of these 393 

depositional sequences in the Northern Flinders Basin may reflect erosion during subglacial 394 

downcutting, coeval with GES 1 at the top of the Holowilena Ironstone (Figs. 7-9). 395 

In the North Flinders Basin, Le Heron et al. (in press) recently interpreted a trough mouth fan 396 

(TMF) in the Sturtian glacigenic record, building out seaward of a small palaeo-ice stream. Three 397 

facies associations are recognized, comprising a diamictite facies association accumulating via 398 

glaciogenic debris flows and ice-rafting processes at the ice margin, a channel belt facies 399 

association recording channelized turbidity currents subject to ice-rafting on the proximal and 400 

medial areas of the fan, and a sheet heterolithics facies association, deposited as non-channelized 401 

turbidites and ice-rafted debris. The overriding signature of sediment gravity flow deposition 402 

subject to ice-rafting processes closely mirrors the depositional sequences described in this study. 403 

The sequences are readily differentiated, however, on the abundance of coarse-grained material. 404 

The Bolla Bollana Formation (Le Heron et al. in press) is dominated by coarse grained diamictite 405 

and conglomerate facies, with a subordinate fines component throughout, and hence records 406 

deposition principally as sediment concentrated glaciogenic debris flows (GDFs). Our present 407 

study, meanwhile, demonstrates significantly greater facies variability, a more diverse range of 408 

grain sizes throughout, and a notably more abundant component of fines. As a result, the dominant 409 

mode of deposition is via less concentrated turbulent sediment flows. Le Heron et al. (in press) 410 

correlated the Bolla Bollana Formation to the second glacial advance (Unit 3) of Young & Gostin 411 

(1991), which would therefore equate to the upper GMaST of this study. This is consistent with 412 

build-out of TMFs during glacial advance (e.g. Powell & Cooper, 2002; Ó’Cofaigh et al., 2012). 413 

The North Flinders Basin is, however, widely considered as a separate sub-basin, disconnected from 414 

the depocentres of the central and southern Flinders Ranges (Preiss 1987, 2000; Preiss et al. 2011). 415 



Arguably, therefore, separate ice masses may have fed each depocentre, where the evidence for 416 

concomitant advance phases, each following a period of significant ice meltback, may testify to 417 

regional warming and cooling events. 418 

To summarise, this study proposes multiple, clear-cut cycles within the Sturtian glaciation of South 419 

Australia. Whilst the concept of hydrological shutdown under the snowball Earth hypothesis 420 

(Hoffman et al., 1998; Hoffman & Schrag, 2002) is readily dismissed from sedimentological 421 

evidence (Allen and Etienne, 2008), the true nature of ice sheet dynamics have awaited 422 

clairification. Despite having received very few attempts to apply it in the Cryogenian, sequence 423 

stratigraphic analysis is clearly a valuable tool to elucidate glacial cycles, including recognition of 424 

open water during glacial minima. Detailed examination of the sections at Holowilena Creek, 425 

Oladdie Creek and Hillpara Creek therefore contribute to the growing body of research supporting a 426 

dynamic Neoproterozoic cryosphere, akin to the numerous Phanerozoic icehouse events recorded 427 

throughout Earth’s history (e.g. Etienne et al., 2007; Allen & Etienne, 2008; Arnaud et al., 2011 and 428 

refs therein). Contingent on an adequate chronostratigraphic framework, detailed facies and 429 

sequence stratigraphic analysis of pan-global ‘Sturtian’ successions may even allow the 430 

glaciodynamic signature of these successions to be assessed on a global scale. 431 

Conclusions 432 

Detailed sedimentary logging of previously little described sections in Holowilena Creek, Oladdie 433 

Creek and Hillpara Creek in the central and southern Flinders Ranges reveals significant lateral and 434 

vertical facies variation within the Yudnamutana Subgroup. Repeated occurrences of ice-rafted 435 

debris and subglacially striated clasts attest to a strong glacial influence on sedimentation. The 436 

application of glacial sequence stratigraphy enables the dynamics of the Sturtian ice sheet to be 437 

elucidated: 438 



• Five facies associations are recognized: 1) Diamictite and conglomerate facies association 439 

(glaciogenic debris flows and turbidites subject to secondary ice-rafting), 2) Interbedded 440 

heterolithics facies association (debrites, low-density turbidites and hemipelagic fines), 3) 441 

Hummocky cross-stratified sandstone facies association (storm-wave agitation of low-442 

density turbidity currents and settling of hemipelagic fines), 4) Lonestone-bearing siltstone 443 

facies association (settling of hemipelagic fines and isolated sand-rich turbulent 444 

underflows), and 5) Ferruginous siltstone and sandstone facies association (settling of 445 

hemipelagic fines and sand-rich turbulent underflows under enhanced anoxia, subject to 446 

subordinate ice-rafting). 447 

• Thickness variations across the logged sections attest to an irregular underlying 448 

palaeotopography during deposition, attributed to the combined influence of pre- and early 449 

syn-depositional rift activity and subglacial downcutting. 450 

• Glacial sequence stratigraphic analysis identifies four glacial advance systems tracts 451 

(GAST), separated by three glacial retreat systems tracts (GRST), the uppermost GRST 3 452 

testifying to open water conditions. These findings support dynamic advance and retreat of 453 

the Sturtian ice sheet, requiring an active hydrological cycle. 454 
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Figure captions 689 

Figure 1: Geological sketch map of the Adelaide Fold Belt, modified after Preiss (1993), showing 690 
location of studied sections. Detailed geological maps of study areas inset; A) Holowilena Creek, 691 
modified after Preiss (1999), B) Oladdie Creek and C) Hillpara Creek modified after Binks (1968). 692 

Figure 2: Sketch map demonstrates distribution of Sturtian sedimentary deposits and depositional 693 
basins throughout the Adelaide Fold Belt, modified after Preiss et al. (1998). Note location of 694 
Barratta Trough and Yudnamutana Trough, representing the principal depocentres during Sturtian 695 
glaciation. 696 

Figure 3: Cryogenian stratigraphy and geochronology of the Adelaide Fold Belt and Stuart Shelf, 697 
after Preiss et al. (1998). Note disparity in stratigraphic nomenclature of ‘Sturtian’ glacigenic 698 
deposits across South Australia. In this paper data are presented from the Yudnamutana Subgroup 699 
of the central and south-west Flinders Ranges. 700 

Figure 4: Logged sections of the Yudnamutana Subgroup in the central and southern Flinders 701 
Ranges; A) Holowilena Creek (base of log: 31°59.232’S 138°51.052’E), B) Oladdie Creek (base of 702 
log: 32°28.039’S 138°38.285’E), C) Hillpara Creek (base of log: 32°33.777’S 138°47.302’E). Note 703 
the variable thickness and lateral distribution of the five facies associations across the logged 704 
sections. Significant thickness changes from north to south attest to irregular palaeotopographic 705 
relief during deposition. 706 

Figure 5: Representative photographs of the diamictite and conglomerate facies association. (a) 707 
Erosive scour at base of normally-graded conglomerate-sandstone interbeds (white triangles 708 
demonstrate grading patterns); (b) Ice-rafted dropstone, puncturing and downwarping the 709 
underlying laminae. Compaction related deflection above lonestone significantly lower in amplitude 710 
than below; (c) Ice-rafted debris with impact related deformation; (d-e) Profile view of rotational 711 
turbate structures (circular alignment of clasts around a core stone or rigid matrix). Coin and lens 712 
cap for scale measure 2 cm and 5 cm, respectively. 713 

Figure 6: Interbedded heterolithics facies association: (a) Fine-grained current ripple cross-714 
laminated sandstone and coarse to granule erosive based sandstone interbeds; (b) Soft-sediment 715 
slump folded sandstone interbeds; (c) Trough cross-lamination, convolute laminae and load and 716 
flame structures in beds which onlap the underlying Pualco Tillite (see Fig. 8a). Hummocky cross-717 
stratified sandstone facies association: (d) Dominantly isotropic hummocky cross-stratified 718 
sandstone interbeds, interpretive overlay in (e); (f) Amalgamated sets of isotropic cross strata, with 719 
truncation of laminae to the left and above coin. Lonestone-bearing siltstone facies association: 720 
(g) ice-rafted debris downwarps and punctures underlying silt. Ferruginous siltstone and 721 
sandstone facies association: (h) Distinct, sharp banding within the Holowilena Ironstone 722 
interpreted as possible algal laminites. Note irregular fold structure/possible domed algal laminite, 723 
verging towards the south-east. (i) Micro-scale ice-rafted debris which punctures and downwarps 724 
underlying laminae. Coin for scale measures 2 cm. 725 

Figure 7: Sequence stratigraphic framework for the studied sections. Glacial systems tracts are 726 
separated either by a glacial erosion surface (GES) or glacial bounding surface (GBS), the latter 727 
including the glacial advance surface (GAS) and iceberg-rafting termination surface (ITS). Key for 728 
glacial systems tracts codes: GAST= glacial advance systems tract; GRST= glacial retreat systems 729 
tract; GMaST= glacial maximum systems tract; GMiST= glacial minimum systems tract.  730 

Figure 8: Photographs of significant depositional boundaries within the studied succession. (a) 731 
Glacially-influenced Pualco Tillite onlapped by non-glacially influenced interbedded heterolithics 732 



(see Fig. 6c); (b) Glacial erosion surface at the base of the Wilyerpa Formation, downcutting into 733 
the Holowilena Ironstone; (c) Influx of extrabasinal granite clasts, indicated by white arrows, at 734 
inferred glacial maximum; (d) Conglomeratic transgressive lag records terminal glacial conditions 735 
at the top of the Wilyerpa Formation, succeeded by post-glacial siltstone of the Tapley Hill 736 
Formation. Hammer and lens cap for scale measure 26 cm and 5 cm, respectively. 737 

Figure 9: Simple depositional model for the studied sections in the central and southern Flinders 738 
Ranges. Sequence stratigraphic analysis identifies four glacial advance sequences, separated by 739 
three intervals of ice meltback. During glacial advance, dynamic ice sheet oscillations drive 740 
delivery of glaciogenic debris flows and glacioturbidites downslope, subject to secondary ice-741 
rafting. During glacial retreat, the ice-rafting signature is lost, and ice minimum conditions permit 742 
storm-wave agitation of the water column, and generation of hummocky cross-stratified sandstones. 743 
Thickness variations across the logged sections attest to significant palaeotopographic relief during 744 
deposition, creating progressively greater accommodation space downslope (Hillpara-Oladdie-745 
Holowilena) through the combined effects of pre- and early syn-depositional rift activity and 746 
subglacial downcutting. Key for glacial systems tracts codes: GAST= glacial advance systems tract; 747 
GRST= glacial retreat systems tract; GMaST= glacial maximum systems tract; GMiST= glacial 748 
minimum systems tract. 749 
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