31 research outputs found

    White Matter Abnormalities in Patients with Treatment-Resistant Genetic Generalized Epilepsies.

    Get PDF
    BACKGROUND Genetic generalized epilepsies (GGEs) are associated with microstructural brain abnormalities that can be evaluated with diffusion tensor imaging (DTI). Available studies on GGEs have conflicting results. Our primary goal was to compare the white matter structure in a cohort of patients with video/EEG-confirmed GGEs to healthy controls (HCs). Our secondary goal was to assess the potential effect of age at GGE onset on the white matter structure. MATERIAL AND METHODS A convenience sample of 23 patients with well-characterized treatment-resistant GGEs (13 female) was compared to 23 HCs. All participants received MRI at 3T. DTI indices, including fractional anisotropy (FA) and mean diffusivity (MD), were compared between groups using Tract-Based Spatial Statistics (TBSS). RESULTS After controlling for differences between groups, abnormalities in DTI parameters were observed in patients with GGEs, including decreases in functional anisotropy (FA) in the hemispheric (left>right) and brain stem white matter. The examination of the effect of age at GGE onset on the white matter integrity revealed a significant negative correlation in the left parietal white matter region FA (R=-0.504; p=0.017); similar trends were observed in the white matter underlying left motor cortex (R=-0.357; p=0.103) and left posterior limb of the internal capsule (R=-0.319; p=0.148). CONCLUSIONS Our study confirms the presence of widespread white matter abnormalities in patients with GGEs and provides evidence that the age at GGE onset may have an important effect on white matter integrity

    Physiological and metabolic consequences of viral infection in Drosophila melanogaster

    Get PDF
    The effect of temperature on the evolution of metabolism has been the subject of debate for a century; however, no consistent patterns have emerged from comparisons of metabolic rate within and among species living at different temperatures. We used experimental evolution to determine how metabolism evolves in populations of Drosophila melanogaster exposed to one of three selective treatments: a constant 16°C, a constant 25°C, or temporal fluctuations between 16 and 25°C. We tested August Krogh's controversial hypothesis that colder environments select for a faster metabolism. Given that colder environments also experience greater seasonality, we also tested the hypothesis that temporal variation in temperature may be the factor that selects for a faster metabolism. We measured the metabolic rate of flies from each selective treatment at 16, 20.5, and 25°C. Although metabolism was faster at higher temperatures, flies from the selective treatments had similar metabolic rates at each measurement temperature. Based on variation among genotypes within populations, heritable variation in metabolism was likely sufficient for adaptation to occur. We conclude that colder or seasonal environments do not necessarily select for a faster metabolism. Rather, other factors besides temperature likely contribute to patterns of metabolic rate over thermal clines in nature

    Forty years of carabid beetle research in Europe - from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation

    Get PDF
    Volume: 100Start Page: 55End Page: 14

    “Amity Seizures”: A previously unreported semiology localizing to a circuit between the right hippocampus and orbitofrontal area

    No full text
    We describe a case of focal epilepsy with a semiology consisting of behaviors indicating an enthusiastic desire for those around him to get along and engage in friendly relations, which we refer to as “amity seizures”. The patient was a 41-year-old right-handed male with seizures since age 26. Semiology consisted of stereotyped enthusiastic behaviors such as expressing “Peace! Peace!… Come on, we all on the same team, right?!”, and giving hugs, kisses, and high-fives to those around him. On SEEG evaluation, 2 independent areas of seizure onset were identified, the right hippocampus and right posterior orbitofrontal area. Locally confined seizures had bland manifestation. However, spread from right hippocampus to right orbitofrontal area, or vice versa, elicited his typical amity seizure semiology. To our knowledge this is the first report of the seizure semiology we have coined “Amity seizures”. While emotions were once thought to localize to discrete brain regions, they are now accepted to arise from networks across multiple brain regions. The fact that this behavior only occurred when seizures spread from either of 2 onset zones to the other suggests that this semiology results from network engagement between, and likely beyond, either onset zone

    Predictive value of hippocampal internal architecture asymmetry in temporal lobe epilepsy

    No full text
    BackgroundAsymmetry of hippocampal internal architecture (HIA) clarity has been suggested to be a sign of hippocampal sclerosis (HS) and is frequently associated with other MRI findings of HS. The goal of this work is to use a previously developed HIA visual scoring system (Ver Hoef et al., 2013) to quantify HIA asymmetry in a retrospective series of consecutive temporal lobe epilepsy (TLE) patients and evaluate its value in predicting laterality of seizure onset both in patients with other signs of HS (HS+) and those without (HS-).MethodsThe HIA scoring system was used to rate hippocampal asymmetry and to assess the agreement between HIA and seizure lateralization. The median values of the average HIA scores for each hippocampus were compared for HS+ epileptogenic hippocampi, HS- epileptogenic hippocampi, and non-epileptogenic hippocampi with a Kruskal-Wallis one-way analysis of variance by ranks. Pair-wise differences between groups were evaluated with the two-tailed Mann-Whitney U test. A logistic regression model examined the utility of average HIA asymmetry score in predicting the true laterality of seizure onset as determined by video-EEG. Sensitivity and specificity are calculated using various asymmetry thresholds in each patient group.ResultsFifty-five patients were identified who met inclusion criteria. Thirteen patients (24%) were found to have hippocampal atrophy and/or signal abnormality indicative of HS (HS+) and 42 did not (HS-). Significant differences were observed in the distribution of individual and average HIA scores between each of the groups of hippocampi, with HS+ hippocampi having the lowest HIA scores and non-epileptogenic hippocampi having the highest. Logistic regression analysis showed that the average HIA asymmetry score was a strong predictor of the laterality of seizure onset (β=3.93508, p<0.001). HIA asymmetry remained significant even after adjustment for HS+/HS- status (β=3.8854, p<0.001). Among HS- patients, when the average HIA asymmetry score was equal to or exceeded a threshold value of 0.5, the specificity for correctly predicting the side of seizure onset was between 95% and 100% with a sensitivity of 40-45%. Among HS+ patients, a threshold of 0.3 yielded a sensitivity of 85% and specificity of 100%.ConclusionsIn this report we show for the first time that HIA asymmetry is a significant predictor of the laterality of seizure onset in TLE patients with otherwise normal MRI findings, and that the proposed HIA scoring system has high specificity and moderate sensitivity for lateralizing seizure onset in patients with TLE

    Predictive value of hippocampal internal architecture asymmetry in temporal lobe epilepsy

    No full text
    BACKGROUND: Asymmetry of hippocampal internal architecture (HIA) clarity has been suggested to be a sign of hippocampal sclerosis (HS) and is frequently associated with other MRI findings of HS. The goal of this work is to use a previously developed HIA visual scoring system (Ver Hoef et al., under review) to quantify HIA asymmetry in a retrospective series of consecutive temporal lobe epilepsy (TLE) patients and evaluate its value in predicting laterality of seizure onset both in patients with other signs of HS (HS+) and those without (HS−). METHODS: The HIA scoring system was used to rate hippocampal asymmetry and to assess the agreement between HIA and seizure lateralization. The median values of the average HIA scores for each hippocampus were compared for HS+ epileptogenic hippocampi, HS− epileptogenic hippocampi, and non-epileptogenic hippocampi with a Kruskal-Wallis one-way analysis of variance by ranks. Pairwise differences between groups were evaluated with the two-tailed Mann-Whitney U test. A logistic regression model examined the utility of average HIA asymmetry score in predicting the true laterality of seizure onset as determined by video-EEG. Sensitivity and specificity are calculated using various asymmetry thresholds in each patient group. RESULTS: Fifty-five patients were identified who met inclusion criteria. Thirteen patients (24%) were found to have hippocampal atrophy and/or signal abnormality indicative of HS (HS+) and 42 did not (HS−). Significant differences were observed in the distribution of individual and average HIA scores between each of the groups of hippocampi, with HS+ hippocampi having the lowest HIA scores and non-epileptogenic hippocampi having the highest. Logistic regression analysis showed that the average HIA asymmetry score was a strong predictor of the laterality of seizure onset (β=3.93508, p<0.001). HIA asymmetry remained significant even after adjustment for HS+/HS− status (β =3.8854, p<0.001). Among HS− patients, when the average HIA asymmetry score was equal to or exceeded a threshold value of 0.5, the specificity for correctly predicting the side of seizure onset was between 95% and 100% with a sensitivity of 40% to 45%. Among HS+ patients, a threshold of 0.3 yielded a sensitivity of 85% and specificity of 100%. CONCLUSIONS: In this report we show for the first time that HIA asymmetry is a significant predictor of the laterality of seizure onset in TLE patients with otherwise normal MRI findings, and that the proposed HIA scoring system has high specificity and moderate sensitivity for lateralizing seizure onset in patients with TLE
    corecore