288 research outputs found
GeoCLEF 2006: the CLEF 2006 Ccross-language geographic information retrieval track overview
After being a pilot track in 2005, GeoCLEF advanced to be a regular track within CLEF 2006. The
purpose of GeoCLEF is to test and evaluate cross-language geographic information retrieval (GIR): retrieval for
topics with a geographic specification. For GeoCLEF 2006, twenty-five search topics were defined by the
organizing groups for searching English, German, Portuguese and Spanish document collections. Topics were
translated into English, German, Portuguese, Spanish and Japanese. Several topics in 2006 were significantly
more geographically challenging than in 2005. Seventeen groups submitted 149 runs (up from eleven groups and
117 runs in GeoCLEF 2005). The groups used a variety of approaches, including geographic bounding boxes,
named entity extraction and external knowledge bases (geographic thesauri and ontologies and gazetteers)
Gravitational Field of Fractal Distribution of Particles
In this paper we consider the gravitational field of fractal distribution of
particles. To describe fractal distribution, we use the fractional integrals.
The fractional integrals are considered as approximations of integrals on
fractals. Using the fractional generalization of the Gauss's law, we consider
the simple examples of the fields of homogeneous fractal distribution. The
examples of gravitational moments for fractal distribution are considered.Comment: 14 pages, LaTe
Potential Added Value of Psychological Capital in Predicting Work Attitudes
Meeting the challenge of effectively managing human resources requires new thinking and approaches. To extend the traditional perspective of economic capital, increasing recognition is being given to human capital and more recently social capital, this article proposes and empirically tests the potential added value that psychological capital may have for employee attitudes of satisfaction and commitment. After first providing the background and theory of PsyCap, this article reports a study of manufacturing employees (N = 74) that found a significant relationship between PsyCap and job satisfaction (r=.373) and organization commitment (r=.313). Importantly, the employees’ PsyCap had a significant added impact over human and social capital on these work attitudes. Future research and practical implications conclude the article
The chemical enrichment of the ICM from hydrodynamical simulations
The study of the metal enrichment of the intra-cluster and inter-galactic
media (ICM and IGM) represents a direct means to reconstruct the past history
of star formation, the role of feedback processes and the gas-dynamical
processes which determine the evolution of the cosmic baryons. In this paper we
review the approaches that have been followed so far to model the enrichment of
the ICM in a cosmological context. While our presentation will be focused on
the role played by hydrodynamical simulations, we will also discuss other
approaches based on semi-analytical models of galaxy formation, also critically
discussing pros and cons of the different methods. We will first review the
concept of the model of chemical evolution to be implemented in any
chemo-dynamical description. We will emphasise how the predictions of this
model critically depend on the choice of the stellar initial mass function, on
the stellar life-times and on the stellar yields. We will then overview the
comparisons presented so far between X-ray observations of the ICM enrichment
and model predictions. We will show how the most recent chemo-dynamical models
are able to capture the basic features of the observed metal content of the ICM
and its evolution. We will conclude by highlighting the open questions in this
study and the direction of improvements for cosmological chemo-dynamical models
of the next generation.Comment: 25 pages, 11 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 18; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Self-medication with Antimicrobial Drugs in Europe
Antimicrobial drug self-medication occurs most often in eastern and southern Europe and least often in northern and western Europe
An improved method for measuring muon energy using the truncated mean of dE/dx
The measurement of muon energy is critical for many analyses in large
Cherenkov detectors, particularly those that involve separating
extraterrestrial neutrinos from the atmospheric neutrino background. Muon
energy has traditionally been determined by measuring the specific energy loss
(dE/dx) along the muon's path and relating the dE/dx to the muon energy.
Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in
dE/dx values is quite large, leading to a typical energy resolution of 0.29 in
log10(E_mu) for a muon observed over a 1 km path length in the IceCube
detector. In this paper, we present an improved method that uses a truncated
mean and other techniques to determine the muon energy. The muon track is
divided into separate segments with individual dE/dx values. The elimination of
segments with the highest dE/dx results in an overall dE/dx that is more
closely correlated to the muon energy. This method results in an energy
resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This
technique is applicable to any large water or ice detector and potentially to
large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
We report on a measurement of the cosmic ray energy spectrum with the IceTop
air shower array, the surface component of the IceCube Neutrino Observatory at
the South Pole. The data used in this analysis were taken between June and
October, 2007, with 26 surface stations operational at that time, corresponding
to about one third of the final array. The fiducial area used in this analysis
was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV
measured for three different zenith angle ranges between 0{\deg} and 46{\deg}.
Because of the isotropy of cosmic rays in this energy range the spectra from
all zenith angle intervals have to agree. The cosmic-ray energy spectrum was
determined under different assumptions on the primary mass composition. Good
agreement of spectra in the three zenith angle ranges was found for the
assumption of pure proton and a simple two-component model. For zenith angles
{\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the
cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on
composition assumption. Spectral indices above the knee range from -3.08 to
-3.11 depending on primary mass composition assumption. Moreover, an indication
of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure
Acceleration of Relativistic Protons during the 20 January 2005 Flare and CME
The origin of relativistic solar protons during large flare/CME events has
not been uniquely identified so far.We perform a detailed comparative analysis
of the time profiles of relativistic protons detected by the worldwide network
of neutron monitors at Earth with electromagnetic signatures of particle
acceleration in the solar corona during the large particle event of 20 January
2005. The intensity-time profile of the relativistic protons derived from the
neutron monitor data indicates two successive peaks. We show that microwave,
hard X-ray and gamma-ray emissions display several episodes of particle
acceleration within the impulsive flare phase. The first relativistic protons
detected at Earth are accelerated together with relativistic electrons and with
protons that produce pion decay gamma-rays during the second episode. The
second peak in the relativistic proton profile at Earth is accompanied by new
signatures of particle acceleration in the corona within approximatively 1
solar radius above the photosphere, revealed by hard X-ray and microwave
emissions of low intensity, and by the renewed radio emission of electron beams
and of a coronal shock wave. We discuss the observations in terms of different
scenarios of particle acceleration in the corona.Comment: 22 pages, 5 figure
Effects of Intermittent IL-2 Alone or with Peri-Cycle Antiretroviral Therapy in Early HIV Infection: The STALWART Study
The Study of Aldesleukin with and without antiretroviral therapy (STALWART) evaluated whether intermittent interleukin-2 (IL-2) alone or with antiretroviral therapy (ART) around IL-2 cycles increased CD4+ counts compared to no therapy
Physical Processes in Star Formation
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio
- …