15 research outputs found

    Direct laser written polymer waveguides with out of plane couplers for optical chips

    Full text link
    Optical technologies call for waveguide networks featuring high integration densities, low losses, and simple operation. Here, we present polymer waveguides fabricated from a negative tone photoresist via two-photon-lithography in direct laser writing, and show a detailed parameter study of their performance. Specifically, we produce waveguides featuring bend radii down to 40 {\mu}m, insertion losses of the order of 10 dB, and loss coefficients smaller than 0.81 dB/mm, facilitating high integration densities in writing fields of 300 {\mu}m x 300 {\mu}m. A novel three-dimensional coupler design allows for coupling control as well as direct observation of outputs in a single field of view through a microscope objective. Finally, we present beam-splitting devices to construct larger optical networks, and we show that the waveguide material is compatible with the integration of quantum emitters

    Analysis of single nucleotide polymorphisms in the FAS and CTLA-4 genes of peripheral T-cell lymphomas

    Get PDF
    Angioimmunoblastic T-cell lymphoma (AILT) represents a subset of T-cell lymphomas but resembles an autoimmune disease in many of its clinical aspects. Despite the phenotype of effector T-cells and high expression of FAS and CTLA-4 receptor molecules, tumor cells fail to undergo apoptosis. We investigated single nucleotide polymorphisms (SNPs) of the FAS and CTLA-4 genes in 94 peripheral T-cell lymphomas. Although allelic frequencies of some FAS SNPs were enriched in AILT cases, none of these occurred at a different frequency compared to healthy individuals. Therefore, SNPs in these genes are not associated with the apoptotic defect and autoimmune phenomena in AILT

    Dickkopf-1 (DKK1) is a widely expressed and potent tumor-associated antigen in multiple myeloma

    No full text
    The identification of novel tumor-associated antigens, especially those shared among patients, is urgently needed to improve the efficacy of immunotherapy for multiple myeloma (MM). In this study, we examined whether Dickkopf-1 (DKK1), a protein that is not expressed in most normal tissues but is expressed by tumor cells from almost all patients with myeloma, could be a good candidate. We identified and synthesized DKK1 peptides for human leukocyte antigen (HLA)–A*0201 and confirmed their immunogenicity by in vivo immunization in HLA-A*0201 transgenic mice. We detected, using peptidetetramers, low frequencies of DKK1 peptide-specific CD8-positive (CD8+) T cells in patients with myeloma and generated peptide-specific T-cell lines and clones from HLA-A*0201-positive (HLA-A*0201+) blood donors and patients with myeloma. These T cells efficiently lysed peptide-pulsed but not unpulsed T2 or autologous dendritic cells, DKK1-positive (DKK1+)/HLA-A*0201+ myeloma cell lines U266 and IM-9, and, more importantly, HLA-A*0201+ primary myeloma cells from patients. No killing was observed on DKK1+/HLA-A*0201-negative (HLA-A*0201−) myeloma cell lines and primary myeloma cells or HLA-A*0201+ normal lymphocytes, including B cells. These results indicate that these T cells were potent cytotoxic T cells and recognized DKK1 peptides naturally presented by myeloma cells in the context of HLA-A*0201 molecules. Hence, our study identifies DKK1 as a potentially important antigen for immunotherapy in MM

    Integrin β7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion

    No full text
    Integrin-β7 (ITGB7) mRNA is detected in multiple myeloma (MM) cells and its presence is correlated with MAF gene activation. Although the involvement of several integrin family members in MM-stoma cell interaction is well documented, the specific biologic functions regulated by integrin-β7 in MM are largely unknown. Clinically, we have correlated integrin-β7 expression in MM with poor survival outcomes post autologous stem cell transplantation and postsalvage therapy with bortezomib. Functionally, we have found that shRNA-mediated silencing of ITGB7 reduces MM-cell adhesion to extra-cellular matrix elements (fibronectin, E-cadherin) and reverses cell-adhesion–mediated drug resistance (CAM-DR) sensitizing them to bortezomib and melphalan. In addition, ITGB7 silencing abrogated MM-cell transwell migration in response to SDF1α gradients, reduced vessel density in xenografted tumors, and altered MM cells in vivo homing into the BM. Mechanistically, ITGB7 knockdown inhibited focal adhesion kinase (FAK) and Src phosphorylation, Rac1 activation, and SUMOylation, reduced VEGF production in MM–BM stem cell cocultures and attenuated p65-NF-κB activity. Our findings support a role for integrin-β7 in MM-cell adhesion, migration, and BM homing, and pave the way for a novel therapeutic approach targeting this molecule
    corecore